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1 Introduction

A sizable body of empirical economic research concerns the analysis of peer effects,
network effects and more generally “social effects,” i.e. mutual externalities induced
by socio-economic interaction. Within this literature, peer effects in education occupy
a prominent position (Sacerdote, 2001; Calvó-Armengol et al., 2009; De Giorgi et al.,
2010; Carrell et al., 2013), but applications in more diverse fields are also numerous
(Glaeser et al., 1996; Duflo and Saez, 2003; Mas and Moretti, 2009).1 In the face of a
growing empirical evidence, econometric analysis has struggled for a while to provide
a unique structural interpretation to observed group correlations in socio-economic
outcomes. Over time, advances have been made: to unambiguously identify the effect
of social interactions, the current econometric theory and practice emphasize the use
of instrumental variables based upon the observable characteristics of indirectly con-
nected agents in structures of social interactions with a non-trivial topology, such as
networks (Bramoullé et al., 2009). However, this kind of approach is largely confined
to a restricted set of settings where such characteristics, as well as the structure of
socio-economic interactions itself, are both as good as exogenous. This makes these
studies liable to the critique, which was put forward most notably by Angrist (2014),
according to which the current results in the literature are likely to reflect spurious
correlations due to unobserved “correlated effects” that are shared between peers.

By contrast, in this paper we examine a cross-sectional model of social interactions
where the observed and unobserved individual characteristics are: (i) cross-correlated
across individuals in some metric space, and (ii) mutually dependent on one another.
Our point of departure is a “Spatially Autoregressive” model (Cliff and Ord, 1981),
hereinafter SAR, whose econometrics has been analyzed extensively (Lee, 2007a,b;
Lee et al., 2010; Lin and Lee, 2010; Liu and Lee, 2010; Lee and Liu, 2010). Similarly
to other papers, we derive our empirical model from an explicit theoretical (strategic)
framework; unlike most, ours is based on a Cobb-Douglas utility function, and it can
accommodate contexts ranging from peer effects in the classroom to R&D spillovers.

1Studies of R&D and knowledge spillovers more generally, which follow the tradition initiated by
Jaffe (1986, 1989), are seldom counted among these studies. This is quite a notable omission, since
the workhorse econometric frameworks employed in this literature are easily seen as variations of the
standard spatial models utilized for the estimation of peer effects. More recent contributions about
R&D spillovers include Bloom et al. (2013), Lychagin et al. (2016) and Zacchia (2020). Other related
strands of literature include the one about peer effects in scientific production (Azoulay et al., 2010;
Waldinger, 2012) and that about learning externalities (Conley and Udry, 2010).
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We explicitly illustrate that in such a framework, the type of endogenous dependence
that we allow for not only makes standard estimates of social effects inconsistent, but
can also be – under some specifications – observationally equivalent to the so-called
“exogenous” or “contextual” effects of peers’ characteristics that are often featured in
studies about social interactions. Both observations resonate with the aforementioned
critique of the whole empirical literature about social effects.

The main contribution of our paper is to show that within this framework, social
effects are identified without resorting to external instruments. We analyze a scenario
where the observable characteristics of socio-economic agents depend in a linear fash-
ion on both their own unobservables and on those of other agents, which makes such
characteristics both endogenous and cross-correlated. We impose no restriction upon
the spatial matrices that characterize this type of endogeneity, except that they are
known to the econometrician up to a multiplicative parameter that quantifies the ex-
tent of endogeneity. As we elaborate later, knowing the structure but not the intensity
of this type of spatial correlation is arguably realistic in those empirical settings that
motivate our work. For example, in peer networks observable characteristics, possibly
all of them, are likely correlated on the basis of individual previous backgrounds, be
they professional, cultural or geographical; in firm-level networks instead, the spatial
correlation of key firm-level variables is likely shaped by similarities in technological
and product market characteristics. Still, in our analysis we also explore the practical
implications of knowing the structure in question imperfectly (misspecification).

The main identifying assumption extends those by Bramoullé et al. (2009), as it
requires that the structure of social interactions is non-overlapping up to an additional
degree of separation in network space relative to their original results. The intuition
is that the type of endogeneity featured in our framework introduces a bias which is
observationally equivalent to higher-order network effects; the bias can be explicitly
controlled for by accounting for the correlation between an individual’s outcome and
the characteristics of higher-order indirect connections in the network. In order to do
that, such correlations must be separately identified at different degrees of separation.
In the more general version of our model we also introduce a number of covariance
restrictions. Their key role is to identify the parameters associated with the primitive
components of the error term’s covariance structure (which we allow to be arbitrarily
autocorrelated and moving-averaged in network space) and that affect the expression
of the aforementioned bias which we control for via first-order moment conditions.
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Leveraging upon the moment conditions upon which our identification results are
based, we propose a GMM approach for the joint estimation of both social effects and
the other parameters of our framework. We derive the asymptotic properties of our
estimator and we evaluate its performance in Monte Carlo simulations. Furthermore,
we showcase it empirically by applying it to the setting and data from the study by
De Giorgi et al. (2010), which is about peer effects in the classroom between students
of Bocconi University in Italy. Although peer groups are formed exogenously in that
setting, it is arguable that the observable characteristics of students – such as their
high school grades – are cross-correlated in a predictable fashion, e.g. as a function of
two students’ geographical provenance. Indeed, the estimates of peer effects based on
an application of our method which accounts for geography-driven cross-correlation
are typically smaller in magnitude compared to customary approaches, and often not
statistically significant. This pattern holds under specific assumptions about the de-
pendence structure, but is robust to perturbations of it. This echoes an observation
we draw from Monte Carlo simulations: our approach can still outcompete the alter-
natives under misspecification of the cross-correlation between the error term and the
observable characteristics. Overall, we interpret these results as a warning against
the incautious interpretation of observed cross-correlations in individual outcomes as
the result of some structural, behavioral mechanisms such as peer effects.

To better frame our contribution, it is worth to summarize the intellectual history
of the workhorse framework in many studies on social effects: the “linear-in-means”
model (a special case of an augmented SARmodel). In a seminal paper, Manski (1993)
highlighted the “reflection problem:” social effects occurring in segregated groups are
hard to identify, because group characteristics and group outcomes are simultaneous.
Since then, econometricians have striven to characterize conditions under which social
effects can be disentangled from confounding factors. The aforementioned, influential
contribution by Bramoullé et al. (2009) illustrates how to identify social effects when
the latter are shaped via networked structures of interaction where connections are not
necessarily transitive; this is especially appealing as networks typically provide more
realistic descriptions of real-world social relationships. Blume et al. (2015) incorporate
their identification results – as well as one based upon covariance restrictions which
builds on Graham (2008) – within a more extended framework. Thanks to these and
other efforts, it is now well understood that complex patterns of individual dependence
make the identification of social effects, if anything, easier.
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Yet most of these analyses either maintain the assumption that the model’s error
term is conditionally independent of the observable characteristics and the structure
of interactions, or they assume structures of dependence which are not as general and
potentially pervasive as ours, and which hence allow for relatively simple solutions.2

Obviously, the spatial econometrics literature has examined correlated unobservables
at length (Kelejian and Prucha, 1998, 2007, 2010; Kapoor et al., 2007; Drukker et al.,
2013); however, individual covariates are typically assumed exogenous in such studies.
In a recent survey of the literature about peer effects in networks, Bramoullé et al.
(2020) discuss several randomization-based attempts aimed at addressing endogeneity
in the composition of peer groups: a problem which is distinct, albeit related, to that
of correlated effects. The survey cites an earlier, incomplete version of our paper as the
only recent contribution that attempts a structural approach to address the issue of
generalized correlated effects, a method potentially amenable to observational studies.
Our idea of exploiting the very spatial structure of endogenous cross-correlation for
the sake of identification builds upon some previous work by Zacchia (2020).3

As mentioned, the literature has focused at length on a key issue: the possibility
that the actual networked structure of interactions is itself endogenous. In an influen-
tial contribution, Goldsmith-Pinkham and Imbens (2013) adopt a Bayesian approach
in order to estimate an extension of the linear-in-means model where the probability
that two peers are linked depends on the degree of similarity between their observ-
able and unobservable characteristics (“homophily”). Following a suggestion originally
given by Blume et al. (2015), some scholars (Arduini et al., 2015; Johnsson and Moon,
2021) later developed a control function approach to account for endogeneity of the
network. These methods embed, within a SAR-like framework, a network formation
model based on Graham (2017).4 In other, more empirical contributions, the network
or part of it is random (Sacerdote, 2001; De Giorgi et al., 2010; Carrell et al., 2013).
We argue that randomizing the peer groups is not sufficient to solve the problem of

2The leading case is again provided by Bramoullé et al. (2009), who allow for fixed effects specific
to each of the multiple “networks” that make up their samples. To remove them, they propose local
data demeaning procedures that conceptually precede their main two-stages estimation approach.

3Zacchia (2020) analyzes a model of R&D spillovers in which firms’ unobservables are correlated
in the network of R&D relationships, and are simultaneous to the R&D of connected firms. In order
to identify spillover effects, he constructs IVs motivated on the finite empirical spatial correlation of
R&D. The framework presented here instead does not restrict the spatial correlation of covariates.

4In a recent contribution, Kuersteiner and Prucha (2020) examine a SAR model for panel data
in which the interaction matrix is possibly endogenous and covariates are weakly exogenous, and
propose an appropriate GMM estimator. In our cross-sectional framework covariates are endogenous.
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correlated effects if spatial correlation in the unobservables is pervasive. We maintain
that the network is exogenous in most of our discussion: thus, we can isolate our key
mechanism of interest. We argue, however, that the approach we propose would also
work under some particular, realistic specifications of endogenous network formation.

It is useful to relate our article to other papers from the literature about peer and
network effects. In addition to the cited contribution by Graham (2008), other papers
make use of conditional covariance restrictions to achieve the identification of social
effects (Glaeser et al., 1996; Moffitt, 2001; Davezies et al., 2009; Pereda-Fernández,
2017; Rose, 2017a). Our method also exploits some covariance restrictions, but unlike
these papers, their role in identification is to disentangle the autonomous covariance
structure of the error term from that of individual covariates, if the two are correlated.
Other contributions develop methods for estimating unknown structures of interaction
(Rose, 2017b; de Paula et al., 2019) using penalized estimators. While we make no use
of such techniques, we argue that they may be adapted for the sake of recovering the
structure of spatial correlation that induces endogeneity. We revisit this observation
in the conclusion of the paper while suggesting future lines of work.

The remainder of this paper is organized as follows. Section 2 presents our model
and the endogeneity specification that we analyze. Section 3 details on the conditions
for the identification of social effects. Section 4 introduces our GMM estimator and
its asymptotic properties. Section 5 assesses its performance in Monte Carlo simula-
tions. Section 6 discusses our empirical application of the proposed estimator. Lastly,
Section 7 concludes the paper. An Appendix provides key mathematical proofs.

2 General Framework

The first part of this section introduces a game-theoretical framework to support our
empirical model, and we emphasize its implications for the statistical identification of
social effects. The last part of this section characterizes the endogeneity specification
that we focus on, and we motivate it with examples inspired by applied research.

2.1 A game of social interactions

We consider an abstract setting of social and economic interactions between hetero-
geneous agents (players) in a network. In order to allow for interdependence between
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the characteristics of agents and the structure of their connections, we allow nature to
randomly draw the weighted network (I,G) that characterizes the social interactions.
Here, I is the set that comprises the N players, who are indexed as i = 1, . . . , N .
The N2-dimensional set G, instead, represents the interaction structure: thus, gij ∈ R
denotes the relative strength of the influence exerted by player j on player i (and vice
versa). We impose two standard normalizations: gij ∈ [0, 1] and gii = 0 for all players
i = 1, . . . , N . Otherwise, we force no particular structure of the network: we generally
allow for asymmetric, directed networks such that for any pair (i, j) ∈ I2, the weight
gij implies no restriction upon the weight gji, and vice versa.

Every player in I is typified by two variables (xi, εi). We denominate xi ∈ X the
observable characteristic of player i, and εi ∈ E his or her unobservable characteristic,
a terminology that conveys what information regarding either variable is available to
econometricians. Both xi and εi may be interpreted as the composition of multiple
socio-economic factors. Thus, one can easily generalize this framework, as we do later
while introducing a more general model with multiple observable characteristics. For
simplicity, we set X = E = R, although restricted supports could be accommodated
easily. We assume that: (i) the random vector of individual observable characteristics
x = (x1, . . . , xN), (ii) the random vector of individual unobservables ε = (ε1, . . . , εN),
and (iii) the network G, are all randomly drawn from a joint probability distribution
F (x, ε,G), which is known by all agents. This paper deals with particular restrictions
on F (·) such that social effects are identified, despite (x, ε) being mutually dependent
(and possibly dependent on G as well). For the sake of exposition, for the moment we
place no a priori restriction on F (·); in the latter part of this section, we introduce
and motivate our endogeneity specification of interest.

Players maximize the following “twice exponential” utility function:

Ui (e1, . . . , eN ;xi, εi) = exp [yi (e1, . . . , eN ;xi, εi)]− exp (ei) , (1)

where yi is the individual-level outcome (denoting, say, grades, or production output).
The latter is determined through a linear relationship which implies a Cobb-Douglas
positive contribution to utility, and that allows for diverse settings such as peer effects
in education and R&D spillovers across firms:

yi (e1, . . . , eN ;xi, εi) = α0 + γ0xi + µei + ν
N∑
i=1

gijej + εi. (2)
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The outcomes of individuals depend upon their characteristics (xi, εi) as well as on a
costly strategic variable ei ∈ R that we call effort : this may represent, for instance,
time dedicated to homework (if the setting of interest is peer effects in education) or
R&D investment (for the R&D spillovers setting). Because of social interactions and
externalities, yi also depends on the effort of all the other players an agent is connected
to (possibly negatively).5 The private and social effects of effort are parametrized as µ
and ν, respectively. Note that in this model, all variables (including the weighted sum
of peer effort) are complements with one another, unlike in quadratic utility models
typical of the peer effects literature (Calvó-Armengol et al., 2009; Blume et al., 2015).

Define the combined parameter β ≡ ν/ (1− µ). We analyze the model under the
following assumptions, the first two of which we maintain throughout the paper.

Assumption 1. Concavity: µ ∈ [0, 1).

Assumption 2. Non-explosiveness: |β| ·maxi∈I
∑N

j=1 gij ∈ [0, 1).

Assumption 3. Row Normalization: ḡi ≡
∑N

j=1 gij = 1 for all i = 1, . . . , N .

Assumption 1 makes the positive part of utility non-convex in the strategic variable
ei, and thus the model salient. Assumption 2 limits the impact of social effects on the
outcome: first, it ensures uniqueness of the equilibrium while ruling out unrealistically
“explosive” solutions with very large values of yi; moreover, from a statistical point
of view, it bounds the variance-covariance of y = (y1, . . . , yN), which is an increasing
function of network connections.6 Assumption 3 is typical of the peer effects literature
(Manski, 1993; Bramoullé et al., 2009) and provides an interpretation of social effects
as the individual response to the weighted average behavior or characteristics of peers.
This contrasts with models where social effects are a function of the total intensity of
connections. Throughout most of this paper we maintain Assumption 3 and focus on
the conditions for identifying the combined parameter β. Later we relax this hypoth-
esis and we discuss a version of our framework where µ and ν are separately identified
through variation in individual in-degree ḡi. Incidentally, observe that Assumption 3
implies that no agent is allowed to be “isolated” (disconnected from the network) and
that under row normalization, Assumption 2 reduces to |β| ∈ [0, 1).

5For example, the R&D of other firms ei can both lead to positive knowledge spillovers on output
yi and to negative business stealing effects; see e.g. Bloom et al. (2013), where these two effects are
separately identified under the hypothesis that they are mediated by different weights gij .

6We observe that variations of this assumption are typical in the spatial econometrics literature,
see e.g. Kelejian and Prucha (2007, 2010); Lee (2007a); Lin and Lee (2010); Liu and Lee (2010).
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We analyze a game of complete information characterized by the following timing.

1. Nature draws (x, ε,G) from F (·). Every player observes the result of this draw.

2. Players simultaneously make their effort choices, and utilities are realized.

By letting the network be generated randomly by nature we abstract from the specifics
of the network formation process, as the following result does not depend on it.7

Proposition 1. Equilibrium. For all realizations of (x, ε,G), under Assumptions
1 and 2 there exists a unique equilibrium of the game, which gives rise to an equation
for the outcome yi that can be expressed for each player i = 1, . . . , N as follows:

yi = α+ β
N∑
j=1

gijyj + γxi + εi, (3)

where α ≡ [α0 + (µ+ ν) logµ] / (1− µ), γ ≡ γ0/ (1− µ) and εi ≡ εi/ (1− µ).

Proof. The First Order Condition for utility maximization can be written, for every
player j = 1, . . . , N , as:

ej = yj + logµ. (4)

Substituting this expression into (2) results in (3). Moreover, by substituting (2) into
(4) and solving for ej it is easily seen that – under the non-explosiveness condition –
the N First Order Conditions together represent a contraction of (e1, . . . , eN) in the(
RN ,M

)
metric space, where M is the max norm. This implies uniqueness.

2.2 Social effects

The reduced form expression (3) that is generated in equilibrium resembles the typical
equation of a “linear-in-means” models from the peer effects literature, but comes with
additional insights. First, parameter β – corresponding to the endogenous effect from
the original classification by Manski (1993) – is given a clear behavioral interpretation:
it is equal to the direct effect of connections’ effort ν amplified by a factor representing
the equilibrium response of individual effort caused by complementarities: intuitively,
students put additional effort while firms increase their R&D investment as they are

7Note that by assuming complete information we make our analysis more general. As discussed
by Zacchia (2020), incomplete information provides additional avenues for the identification of social
effects, thanks to implicit restrictions on the cross-correlation of strategic variables.
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aware of the interdependencies and expect their connections to behave similarly. This
interpretation of β is important, since in many empirical studies of social externalities
individual “effort” is not observable by researchers. In general, however, not even the
combined parameter β is identified, as we show next through a constructed example.

Proposition 2. Non-identification of endogenous social effects. Suppose that
in model (3) it is γ = β = 0, hence yi = α+ εi. There exist restrictions on F (·) such
that, under Assumptions 1-3, such a simple model is observationally equivalent to:

yi = α′ + β′
N∑
j=1

gijyj + γ′xi + ε′i, (5)

where γ′,β′ 6= 0 and the random vector ε′ = (ε′1, . . . , ε
′
N) is such that E [ε′|x,G] = 0.

Proof. Let F (·) be such that εi = ρ
∑N

j=1 gijεj+υi and E [υi|x,G] = π0+π1xi, where
|ρ| ∈ (0, 1) and π1 6= 0. One can verify that yi = α + εi is observationally equivalent
to model (5) for α′ = α (1− ρ) + π0, β′ = ρ, and γ′ = π1.

This stylized example highlights the key issue that this paper is concerned with:
researchers can mistake behavioral externalities for unobserved confounders that are
shared, to some degree, by multiple observations. Although the two mechanisms can
deliver indistinguishable statistical patterns in the data, the latter, unlike the former,
does not allow to make causal claims or draw policy implications. This was, at heart,
the critique of the whole peer effects literature put forward by Angrist (2014).

The second difference with typical linear-in-means models is that in our model we
do not include Manski’s exogenous effect, that is a structural dependence of individual
outcomes on the characteristics xj of peers (also called contextual effects). Although
we could easily include an additional term in (2) to include the exogenous effect, such
a choice is liable to the following critique.

Proposition 3. Non-identification of exogenous effects. There exist specific
restrictions on F (·) such that, under Assumptions 1-3, model (3) is observationally
equivalent to the following statistical model:

yi = α′′ + β′′
N∑
j=1

gijyj + γ′′xi + δ′′
N∑
j=1

gijxj + ε′′i , (6)

where δ′′ 6= 0 and the random vector ε′′ = (ε′′1, . . . , ε
′′
N) is such that E [ε′′|x,G] = 0.
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Proof. Let F (·) be such that εi = ρ
∑N

j=1 gijεj +ε′′i and E [εi|x,G] = κ0+κ1xi, where
|ρ| ∈ (0, 1) and κ1 6= 0. One can verify that models (3) and (5) are observationally
equivalent for α′′ = α+ ρκ0, β′′ = β, γ′′ = γ and δ′′ = ρκ1.

This additional example helps make an important point.8 If unobservables εi are
cross-correlated in the network and, in addition, the observables xi are correlated with
the unobservables εi, then “contextual effects,” say parametrized by δ′, can emerge as
a statistical byproduct of more fundamental structural or stochastic patterns. We see
this as a cautionary message to researchers aiming to estimate spillover effects in any
setting: the solution of any endogeneity problems due to simultaneous unobservables
(and possibly network formation) must precede model specification. For this reason,
we restrict our main discussion of identification, our Monte Carlo simulations, as well
as our empirical application to models without exogenous effects (still, we allow for
them in both our general model and in the construction of our estimator).

2.3 Spatial linear endogeneity

In this paper we focus on restrictions on F (·) expressed through the following linear
statistical relationship between observable characteristics xi and unobservables εi, for
i = 1, . . . , N :

xi = x̃i + ξ
N∑
j=1

cijεj. (7)

In the above, ξ ∈ R is a parameter; x̃i is a random variable that we call the indepen-
dent component of the variation of xi, whose distribution is left unrestricted except
for being assumed continuous (x̃i 6= x̃j almost surely for i 6= j) as well as independent
of individual unobservables (E [x̃iεj] = 0 for any i, j); whereas the weights cij, that
we call characteristic weights, introduce the statistical spatial dependence of interest.
Like in the case of the adjacency weights gij, we impose the normalization cij ∈ [0, 1];
unlike those, however, typically it is cii 6= 0. We collect all the characteristic weights
in the N2-dimensional set C, that we call the “characteristics structure.”

8In both constructed examples the composite unobservable variable εi follows a first order “spa-
tially autoregressive” process, which implies that individual unobservables are increasingly dissimilar
the farther apart are any two agents in the network (a spatial AR(1) process can be approximated
as a spatial MA(∞) process). Observe that the dependence between the unobservable factor εi and
the observable xi is specified in two different ways across the two examples: in Proposition 2, as a
linear regression of the sole innovation term of the spatial AR(1) process over xi, and in Proposition
3, as a linear regression of the entire unobservable εi over xi.
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We denominate the relationship given in (7) a case of spatial linear endogeneity.
This feature of the model can flexibly represent various patterns of interdependence
between the observables of one agent and the unobservables of other agents. We find
it is useful to discuss a number of settings, that are of interest for applied researchers,
where specification (7) can be used to characterize the endogeneity problem of interest.

Segregated groups. Perhaps the simplest cases are those where it is possible to
ex-ante partition the population of interest into groups that are subject to “common
shocks” that affect observables xi and unobservables εi alike. In a schooling context,
for example, the quality of teachers and the overall resources made available to a pupil
(xi) may endogenously depend on their preferences and/or the ability (εi) of their
classmates. This might be induced via an explicit school-level allocation mechanism,
if say more motivated students are assigned the best resources or, conversely, more
disadvantaged ones are compensated with some extra support. In this case, C displays
a “fully segregated” group structure derived from that of classrooms.9 We place no
restriction upon the statistical or the topological relationship between C and G: the
network of interactions can both transcend, and statistically depend upon, the groups
defined by C. This is exemplified in Graph 1, which is inspired by typical schooling
environments: friendships are more likely to occur within than between classrooms.

i

j k

`

Group A Group B

Graph 1: A Cross-Group Friendship Network

Notes. In this graph, nodes (e.g. i, j, k, `) represents observations, edges denote social
interactions (e.g. “friendships”) embodied in G, whereas groups of observations bound
within dash-dotted squares depict a fully segregated characteristics structure C. Thus,
it is for example gi` 6= 0 but ci` = 0, and at the same time, gik = 0 but cik 6= 0.

9By “fully segregated” group structure, we refer to a topological relationship between any triad
of observations (i, j, k) ∈ I3 such that if i and j are connected, they are also either both connected
or both disconnected to any third agent k (if cij 6= 0 then cik 6= 0⇔ cjk 6= 0).
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Spatial correlation. We do not restrict C to fully segregated group structures:
we allow it to represent any metric space defined over the set of observations I, with
possibly cij 6= 0 for any pair (i, j). Consider, for example, a population of competing
firms, where xi represents a firm’s feature such as its size, age or product portfolio;
εi represents unobserved characteristics such as the local environment where the firm
operates or other cost factors; while yi is some outcome of interest (e.g. book value).
One can think of settings where, say because of competition in geographical space,
both yi and xi depend on the unobservables of all firms of interest. Thus, C can be
specified as a collection of weights that are the inverse of any two firms’ distance in
the geographical, technological or product market space. These ideas may also apply
to individuals: for example, in our empirical application about university students we
examine structures C consistent with a spatial correlation of observable characteristics
that exhibits, for two observations i and j and some D > 0, distance decay :

Cov (xi, xj) ∝ exp (−D · dij) , (8)

where dij is the geographical distance between the districts where students hail from.10

Limited network dependence. A leading case is that where the characteristics
structure and the network topology overlap to some degree: for example, if cii = 1 for
i = 1, . . . , N and cij = ψgij for i 6= j and ψ ∈ (0, 1]. Assuming that the elements in
ε = (ε1, . . . , εN) are mutually independent, the spatial correlation in the observables
increase along the total strength of two observations’ (say i and j) mutual connections:

Cov (xi, xj) ∝ ψgjiVar (εi) +ψgijVar (εj) +ψ2

N∑
k=1

gikgjkVar (εk) . (9)

How can this partial overlap emerge? Suppose that the characteristics structure C is
exogenous, while the network G is endogenous and features homophily : the conditional
distribution of one link, say gij, is a negative function of |xi − xj|. Hence, conditional
on the observed network topology the characteristics of any two observations that are
“close” in network space are expected to be similar, and the two sets C and G to be

10Observe that as per (7), Cov (xi, xj) 6= 0 if at least one of the following three conditions is true:
(i) Cov (x̃i, x̃j) 6= 0; (ii) ξ 6= 0 and cij 6= 0; (iii) ξ 6= 0 and Cov (εi, εj) 6= 0. Hence, a cross-correlation
structure such as (8) may arise through a variety of mechanisms; for example, if xi is some measure
of a student’s high-school background while in college (like in our application) student self-selection
occurring differentially across districts is consistent with the third condition above.
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correlated (in the simple example above, parameter ψ can be interpreted as a measure
of the strength of homophily). Note that although we allow for quite general patterns
of correlation between x and G, we maintain throughout that the vector of unobserved
“errors” ε is mean-independent of the network topology. In the general version of the
model developed in Section 3.2, however, we allow second-order moments of the ε to
be general functions of G. This may accommodate restricted patterns of endogenous
network formation featuring homophily on both observables and unobservables, but
that maintain the mean-independence property of the error term.11

Simple dependence on SARMA errors. A relatively simple case is that where
the structural dependence between observables and unobservables does not directly
involve the errors of other observation (that is, cij = 0 if i 6= j) but the errors follow
some exogenous pattern of cross-correlation in network space, similarly to the cases
exposed in Propositions 2 and 3. Production functions provide an excellent example:
according to the First Order Conditions from firm optimization under perfect compe-
tition, firm-level shocks εi (but not the shocks of other firms εj) “transmit” to inputs
xi; however, shocks can be spatially correlated (due e.g. to technological similarities),
something that can be mistaken for spillover effects. If the spatial correlation process
is known, e.g. if it follows some Spatial AutoRegressive Moving Average (SARMA)
process with known order and parameters, one can specify a characteristics structure
C and a set of “primitive shocks” υ = (υ1, . . . , υN) such that, for i = 1, . . . , N :

xi = x̃i + ξεi = x̃i + ξ
N∑
j=1

cijυj, (10)

with the resulting model based on υ bearing implications for identification similar to
those from the baseline case (7). This is best understood within the discussion of the
general model in Section 3.2. The latter also allows for unknown SARMA parameters
that are identified through covariance restrictions.

11We plan to study models of this sort in future work; here, we develop some intuition. Suppose
that εi is the composition of multiple “fundamental” shocks or factors, similarly as in Zacchia (2020),
Appendix B (where such factors are interpreted as “technologies”). Suppose further that connections
in G are statistically dependent on how many such fundamental factors are shared by any two agents i
and j (e.g. two firms are more likely to link up if they share more technologies). Then, connected pairs
are likely to have correlated unobservables. However, this does not necessarily bear any implications
for the outcome of interest, e.g. productivity: while some technology combinations can be conducive
to higher-than-average outcomes (conditionally), others would lead to lower-than-average ones.
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3 Identification

In this section we characterize the conditions for the identification of social effects
under our endogeneity specification. We first illustrate them in the simpler case with
one observable characteristic and no exogenous effect; later we examine a more general
model and the implications of further extensions.

3.1 Bivariate SAR model

Our starting point is the structural relationship (3) combined with the spatial linear
endogeneity specification (7). It is more convenient to rewrite both expressions using
compact notation. Specifically, (3) renders as:

y = αι+ βGy + γx + ε, (11)

while (7) renders as:
x = x̃ + ξCε, (12)

where y, x, ε and x̃ = (x̃1, . . . , x̃N) are arrayed as column vectors, while G and C

are two adjacency matrices of dimension N ×N that array the elements of G and C,
respectively.12 For illustratory purposes, we omit for now the subindices denoting the
sample size N . So long as our assumptions are upheld, we impose no restrictions on
the realizations of G that are allowed by the data generation process. In particular,
G may represent a single large network to which all agents in I belong, like the body
of students from Bocconi University examined by De Giorgi et al. (2010) and in our
empirical application, or a sample of smaller networks with no connections between
them as in applications based on separate classes, like e.g. in Bramoullé et al. (2009).
Recall, though, that under Assumption 3 no agent is allowed to be “isolated.”

Model (11) is a spatially autoregressive (SAR) model according to the classification
of spatial econometric models by Elhorst (2014).13 Hence, our ensuing discussion of
identification applies to a particular version of a SAR model where x and ε are related
through C as in (12). Note that there is one case where identification is trivial: if C

12In this particular case, we prefer to duplicate notation to highlight the difference between G as
an unstructured set of edges and G as its arrayed version (and similarly for C and C). We feel that
this facilitates comparisons with frameworks and models from other contributions in the literature.

13Other authors prefer the denomination “mixed regressive-spatially autoregressive” to remark the
presence of x on the right-hand side of (11). Here we opt for a more concise terminology.
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has rank less than N , researchers may find a matrix B of dimension N ×N such that
BCε = 0 and model (11) can be reshaped as:

By = αBι+ βBGy + γBx + Bε, (13)

a transformed SAR model which is identified and estimable via standard approaches
since, by construction, Bε is mean-independent of Bx = Bx̃. A particular example is
that where C describes a set of “fully segregated” groups with characteristics weights
that are identical within groups; hence, ξCε would feature identical values within a
group and B would be a simple group-demeaning matrix.14 However, we show in both
our Monte Carlo simulations and in our empirical application that transformations
of this sort can yield estimates that are too imprecise, arguably because they remove
much of the relevant statistical variation even if the rank of C is fairly low. We argue
as a consequence that the approach we propose in this paper is useful beyond those
only cases where C has full (or close to full) rank.

To study identification, it is useful to verify that standard moments in the spirit
of Lee (2007a), that are based on the spatial lags of x, are invalid. For the sake of
illustration, we assume that the error term ε is mean independent of the network G,
the characteristics matrix C, and the independent component of the variation of x:

E [ε|G,C, x̃] = 0. (14)

In addition, we also assume that the error term is conditionally homoscedastic:

E
[
εεT

∣∣G,C, x̃
]

= σ2
0I. (15)

Under this hypothesis, for any nonnegative integer q we obtain:

E
[

(Gqx)T ε
∣∣∣G,C, x̃

]
= E

[
(x̃ + ξCε)T (Gq)T ε

∣∣∣G,C, x̃
]

= ξ · E
[
εT (GqC)T ε

∣∣∣G,C, x̃
]

= ξ · Tr
(
CGq · E

[
εεT

∣∣G,C, x̃
])

= ξσ2
0 · Tr (CGq) .

(16)

14This is analogous to the within transformation for the removal of fixed effects in panel data or to
the data transformations by Bramoullé et al. (2009) that remove network-specific common effects.
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In this derivation, the second line exploits the fact that E
[

(Gqx̃)T ε
∣∣∣G,C, x̃

]
= 0

as per (14), an expression that can be recast in terms of an unconditional moment:

E
[
(x− ξCε)T Gqε

]
= 0, (17)

for q = 0, 1, 2 or higher (we will return later to expression (17) because it helps de-
velop intuition for our identification result). The result derived in (16) highlights why
standard moments have a non-zero expectation under our endogeneity specification:15

if the characteristics structure and the network topology overlap to some extent (i.e.
Tr (CGq) 6= 0), the individual unobservables are correlated with the observable char-
acteristics of one’s “peers-of-peers.” Notice that we derived an explicit expression for
the bias. This suggests a natural set of moment conditions m (ϑ) for the identification
of the combined parameters ϑ ≡ (α,β,γ, ξ∗), where ξ∗ ≡ ξσ2

0:

E [m (ϑ)] = E
[
KT (y − αι− βGy − γx)− ξ∗λ

]
= 0; (18)

with:

K ≡
[
ι x Gx G2x

]
,

λ ≡
[
0 Tr (C) Tr (CG) Tr (CG2)

]T
.

In fact, identification of ϑ is possible under quite general conditions.

Proposition 4. Identification of the bivariate SAR model. Consider the statis-
tical model expressed by equations (11), (12), (14) and (15); and suppose that matrices
C and G are observed. If the three matrices I, G and G2 are linearly independent of
one another and the traces Tr (C), Tr (CG) and Tr (CG2) are not simultaneously all
zeros, the combined parameters ϑ ≡ (α,β,γ, ξ∗) are globally identified.

Proof. Express (18) as a function of an arbitrary parameter vector ϑ̃ =
(
α̃, β̃, γ̃, ξ̃∗

)
:

E
[
m
(
ϑ̃
)]

= E
[
(Kx̃ + Kε)

T
[
(Sx̃ + Sε)

(
ϑ\ξ∗ − ϑ̃\ξ̃∗

)
+ ε
]
− ξ̃∗λ

]
=
[
E
[
KT
x̃Sx̃ + KT

εSε
]
λ
] (
ϑ− ϑ̃

)
, (19)

15In an “Addendum” to the Appendix we analyze the bias entailed by conventional methods under
our assumptions. This helps appreciate how the bias depends on the topology of the problem.
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where ϑ\ξ∗ = (α,β,γ), ϑ̃\ξ̃∗ =
(
α̃, β̃, γ̃

)
, and:

Kx̃ ≡
[
ι x̃ Gx̃ G2x̃

]
,

Kε ≡
[
0 ξCε ξGCε ξG2Cε

]
,

Sx̃ ≡
[
ι G (I− βG)−1 (αι+ γx̃) x̃

]
,

Sε ≡
[
0 G (I− βG)−1 (I + γξC) ε ξCε

]
,

with K = Kx̃ + Kε, y = (Sx̃ + Sε)ϑ\ξ∗ + ε, E
[
KT
x̃Sε

]
= E

[
KT
εSx̃

]
= E

[
KT
x̃ε
]

= 0,
and E

[
KT
ε ε
]

= ξ∗λ. The parameter set ϑ is uniquely identified if the only solution

that sets (19) at zero is ϑ̃ = ϑ, which is ensured if matrix
[
E
[
KT
x̃Sx̃ + KT

εSε
]
λ
]

has rank four. This holds under the maintained conditions.

This is a powerful result: it states that if the researcher has some knowledge about
the spatial extent of the process which relates the observable characteristics of agents
to the unobservables of some others, then the parameters of the SAR model, including
the “endogenous” social effect β, can be identified under the same conditions given by
Bramoullé et al. (2009): that the network G is not shaped according to a “fully over-
lapping” group structure. In addition, it is necessary that the characteristics matrix
C overlaps at least partially with the network, but otherwise it is left unrestricted; it
is allowed to assume a group structure or even to coincide with the adjacency matrix
G. The latter condition, however, is generally moot, since its violation would prevent
the identification of the combined parameter ξ∗, but not that of the main parameters
of interest (α,β,γ). In fact, if the spatial correlation of individual characteristics is
unrelated to the network G there is no endogeneity, and standard “peers-of-peers” in-
struments are valid! This point also illustrates why estimates from empirical studies
where G is randomized might still be inconsistent. In fact, if C is “pervasive,” i.e. for
most pairs (i, j) ∈ I2 it is cij 6= 0, it is likely that Tr (CGq) 6= 0 even with a random
network. We illustrate this point in our empirical application.

We illustrate the intuition behind identification in two ways: algebraic-statistical
and graphical. Regarding the former, note that y can be solved as:

y = (I− βG)−1 [αι+ γ (x̃ + ξCε) + ε] =
∞∑
s=0

βsGs [αι+ γx̃ + (I + γξC) ε] . (20)
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Thus, by an argument à la Bramoullé et al. (2009) the model is identified via a set of
instruments of the form Gsx̃, which are unfeasible since x̃ is unobserved. Expression
(20) also suggests that if x̃ and C are both observed, ξ is separately identified. The
appealing nonlinear moments (17), instrumental to our derivation, embed both ideas:
they recast the unfeasible moment conditions so that the independent component of
x is backed up from its constitutent parts. This is feasible as ξ is identified internally
to this approach. One can also gather intuition about the joint identification of all the
parameters via a graph. Consider the four observations (i, j, k, `) that are involved in
both the network and the group structure represented in Graph 1. According to (20),
the variation of yi is explained by the variation of all the elements in (xi, xj, xk, x`),
albeit in a different way. This is represented in Graph 2, which “zooms in” the four
nodes of interest and in addition, it displays some labeled dashed arrows showing what
parameters does each observed characteristic contribute to identify. For example, both
nodes j and ` are connected to i; hence, variation in both xj and x` helps identify the
combined parameter γβ. However, xj (unlike x`) also contributes to the identification
of ξ∗, because node j (unlike node `) belongs to the same “group” as node i.

xk

xj

yi x`

xi

γβ

γβ, ξ∗

γβ2, ξ∗

γ, ξ∗

Group A Group B

Graph 2: Identification: graphical intuition

Notes. This graph elaborates the analysis of nodes (i, j, k, `) from Graph 1, which are
related through both a network structure G (represented by circles and straight lines)
and a “grouped” characteristics structure C (delimited by dash-dotted lines). Directed
dashed arrows that connect the variables encapsulated in either node are labeled by to
the parameter combinations that every observable characteristic on the sending side of
the arrow (xi, xj , xk or x`, with yi always on the receiving side) contributes to identify
per (20). Variable xi is enclosed in a dotted circle to remark that it does not arise from
a node (an observation) different from yi’s.
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3.2 Multivariate SDM model

The identification result illustrated by Proposition 4 is restricted to a simple model
under very restrictive structure of the error terms and assumptions. We thus turn to
the discussion of the following, more general model:

y = αι+ βGy + Xγ+ GXδ+ ε, (21)

where X is a N×K matrix of K random observable characteristics, γ = (γ1, . . . ,γK)

is the vector of K direct effects associated with each of these, while δ = (δ1, . . . , δK)

are theK “contextual effects.” Under Elhorst’s (2014) classification, this is a standard
multivariate “Spatial Durbin Model” (SDM); when G is row-normalized, this model
is known as the “linear-in-means” in the peer effects literature. Model (21) can easily
follow from an extension of our theoretical framework, where nature initially draws
(X, ε,G) from some more general distribution F (·).16 This model is interesting in two
non-alternative cases: (i) all observable characteristics X are endogenous, structurally
dependent on ε, (ii) researchers aim for consistent estimation of all parameters in γ
and δ, in addition to β. In fact, if researchers are only interested in the identification
and consistent estimation of β, a single exogenous observable characteristic x suffices,
provided that endogenous columns of X are dropped.

In addition, we allow for a more general structure of the error term ε, which we
make explicit through the following assumptions.

Assumption 4. Primitive shocks: there exists a set of N “primitive” i.i.d. shocks
υ ≡ (υ1, . . . , υN)T such that E [υ] = 0 and, for some d > 0, E

[
|υi|4+d

]
< ∞ for

i = 1, . . . , N .

Assumption 5. SARMA Unobservables: the unobservable characteristics follow
a stationary Spatial Autoregressive Moving Average process of order (A,M):

ε = (I− φ1F1 − φ2F2 − · · · − φAFA)−1 (I +ψ1E1 +ψ2E2 + · · ·+ψMEM)υ,

where (F1,F2, . . . ,FA) and (E1,E2, . . . ,EM) are two possibly identical sets of linearly
independent N ×N matrices; I−

∑A
a=1φaFa and I +

∑M
m=1ψaEa are both invertible,

and the associated parameters lie within the unit circle: ‖φ‖2 < 1 and ‖ψ‖2 < 1.
16The analysis, including Proposition 1, would proceed largely unchanged. As already mentioned,

one can think of xi from Section 2 as the composition ofK factors, with γ0xi = (1− µ) (Xγ+ GXδ).
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Together, these two assumptions characterize the stochastic properties of the error
term, which is allowed to have a very general spatial correlation structure expressed in
terms of a sequence of “primitive” well-behaved shocks. The spatially autoregressive
component of the error term is defined by the sequence of matrices (F1, . . . ,FA)

and the parameter set φ = (φ1, . . . ,φA); the moving average part is encapsulated by
matrices (E1, . . . ,EM) and parameters ψ = (ψ1, . . . ,ψM). Both matrix sequences are
allowed to coincide and depend on the network structure; a leading case that we allow
is Fa = Ga for a ≤ A and Em = Gm for m ≤ M . While this specification is quite
flexible, we are especially interested in the Spatial Moving Average (SMA) component
of the process. If the spatially autocorrelated component is missing (φ = 0) the SMA
process alone implies zero spatial autocorrelation for observations unrelated through
the Em matrices. We find this empirical property to be a good approximation of some
real-world stylized facts about variables that are diffused in networks.17 Although our
identification results extend to any SARMA process, our estimation framework and
Monte Carlo simulations specialize to a simple SMA(1) process, or (A,M) = (0, 1).

The next assumption generalizes expression (7), which characterizes the spatial
extent of endogeneity, to the multivariate case. In particular, we associate a different
characteristics matrix Ck to each of the K variables in X. For the sake of exposition
we assume that Ck 6= 0 for k = 1, . . . , K. This facilitates the ensuing discussion about
the identification of the multiplicative parameters associated with these matrices.

Assumption 6. Multivariate Spatial Linear Endogeneity: each column of X

is given, for k = 1, . . . , K, by:

X∗,k = x̃k + ξkCkυ, (22)

where ξk ∈ R, Ck 6= 0 is an N×N characteristics matrix specific to the k-th observable
characteristic, while x̃k is a random vector of length K with finite mean. In addition,
we assume that for any two k, k′ = 1, . . . , K with possibly k = k′, the probability limit
defined as Ξkk′ ≡ plimN−1

∑N
i=1 (x̃ki − E [x̃ki]) (x̃k′i − E [x̃k′i]) is finite.

17In a study about the health outcomes of children, Christakis and Fowler (2013) find that most
variables present a spatial autocorrelation in the space of friendship network up to two degrees of
distance. Zacchia (2020) observes the same property for the R&D investment of high-tech firms that
are connected through research collaborations. In addition, he argues that this property can follow
from an underlying SMA(1) process of technological shock, and that it is a good approximation of
a model of network formation driven by a homophily dynamic, where two firms link up with some
probability only if their unobservables are similar.
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Observe a difference relative to the simpler one-characteristic case given in (7): in
the latter, matrix C multiplies the error terms εi’s of the model; in (22), each of the
K characteristic matrices Ck multiplies the “primitive” shocks υi’s. We believe that
this specification, together with our SARMA specification of the error term, is more
flexible and can capture a number of realistic specifications of endogeneity, as already
discussed in Section 2.3.18 However, our results about identification and estimation
would be easy to extend to a setup where the specification of endogeneity in (22) were
to involve ε (which would still follow a generalized SARMA process) instead of υ.

Our final identification-related assumption is the following.

Assumption 7. Exogeneity of the spatial structures: conditional upon the set
S = {G; C1, . . . ,CK ; x̃1, . . . , x̃K} that comprises: (i) the network adjacency matrix,
(ii) the K characteristics matrices, as well as (iii) the K independent component of the
individual characteristics, the primitive shocks have mean zero and are homoscedastic:

E [υ| S] = 0, (23)

E
[
υυT

∣∣S] = σ2I. (24)

This assumption generalizes (14) and (15) to the general model. As in the previous
discussion about the simpler case, this assumption allows to isolate the source of en-
dogeneity introduced via (22) from other confounding factors, such as the endogeneity
of the networked structure of interaction or that of the characteristics structure.

Before expressing our main identification result, an important remark is in order.
The assumptions that we have introduced so far, especially Assumptions 5, 6 and 7,
characterize the complete structure of dependence between the individual observable
and unobservable characteristics of any two observations, in whatever metric space of
interest, for example the pairwise distance in the network (I,G). Thus, our framework
evades the critique by Goldsmith-Pinkham and Imbens (2013), who lament the lack
of general results on cross-observation dependence that would allow identification and
inference of the entire data generation process in those settings where all observations
are related through a large network (which we allow e.g. in our empirical application).
Although our hypotheses about cross-observation dependence are restrictive, they are
also very flexible, and the key parameters that characterize them are identified.

18See e.g. the discussion around (10). There, C =
(
I−

∑A
a=1φaFa

)−1 (
I +

∑M
m=1ψmEm

)
.
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We are now ready to characterize our main result. In what follows, we gather the
parameters that measure the extent of spatial endogeneity as ξ = (ξ1, . . . , ξK).

Theorem 1. General Identification Result. Under Assumptions 1-7, the param-
eters θ ≡ (α,β,γ,δ,ξ,φ,ψ,σ2) are globally identified if βγk + δk 6= 0 for at least
one k = 1, . . . , K; and the following three conditions hold simultaneously:

(i) the matrices I, G, G2 and G3 are linearly independent of one another;

(ii) for k = 1, . . . , K, the four traces gathered in the following vector:

λk ≡
[
Tr (Ck) Tr (CkG) Tr (CkG

2) Tr (CkG
3)
]T

are not simultaneously all zeros;

(iii) the researcher can observe some P ≥ 1+A+M matrices {Pp}Pp=1 of size N×N
that are all linearly independent of one another.

Proof. See the Appendix. The proof adapts the identification arguments by Lee and
Liu (2010). Proposition 4 is a restricted case of this Theorem.

Theorem 1 provides a general identification result for linear-in-means models that
feature contextual effects, when the observable characteristics of individuals, the error
terms and the interaction structure itself are structurally dependent. In addition, we
allow for an error term which is allowed to follow a very general stochastic process,
and we show that under specific conditions the associated parameters are identified.
The latter is, to the best of our knowledge, a novel result in the spatial econometrics
literature, which so far has prevalently examined models whose errors follow simple
spatially autoregressive processes.19 It is useful to discuss how the conditions estab-
lished in the theorem enable identification of the model’s parameters. We first focus
on the “linear” parameters of (21) and the parameters ξ that measure endogeneity;
then we move to the components of the SARMA structure of the error term.

First, observe that the condition that social and contextual effects do not cancel
out for at least one observable characteristic, i.e. ∃k ∈ {0, 1, . . . , K} : βγk+δk 6= 0, is
standard in linear-in-means models (or else β and δ cannot be distinguished). Next,

19For example, Kapoor et al. (2007); Kelejian and Prucha (2010); Drukker et al. (2013), among the
others, analyze SAR(1) disturbances, while Lee and Liu (2010) consider higher order SAR processes.
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to motivate condition (i) return to our simplified analysis in Proposition 4. There, if
matrix G3 is linearly independent from I, G and G2, another moment condition like
(16) with q = 3 can be exploited for identification. In the general case we exploit QK
sets of moments of the following kind, for q = 1, . . . , Q, Q ≥ 4 and k = 1, . . . , K:

E
[
xT
kGq−1ε− λqk

]
= 0, (25)

where λqk depends on the assumed SARMA process. Extending the intuition illus-
trated via Graph 2, the moments based on higher powers of G allow identification of
the contextual effect δ. Condition (ii), which is necessary for the identification of ξ,
corresponds with the “not all-zero traces” requirement from Proposition 4. Like that
one, this condition is not very interesting: were it not to hold, endogeneity would not
be a salient problem in the model.20 The variance components are identified through
standard covariance restrictions of the following kind, for p = 1, . . . , P :

E
[
εTPpε− λp

]
= 0, (26)

where again λp may vary across cases. Clearly, condition (iii) is necessary to rule out
collinearity between the P moments; this also applies to the λp elements. A natural
choice for the moment matrices is Pp = Gp−1, especially where P is small.

We conclude our treatment of identification with a discussion on the realism and
applicability of our assumptions. Our hypotheses about the spatial correlation struc-
ture of the error term (Assumption 5), the formulation of endogeneity (Assumption 6)
and the network of social interactions (Theorem 1) are quite general and can accom-
modate a wide variety of settings. Our key assumptions are two: first, that the error
term is mean-independent of the key topological structures (Assumption 7); second,
that the researchers know the characteristics matrices Ck up to ξk for k = 1, . . . , K.
Exogeneity of the network is a standard condition in this literature; as argued, while
in future work this assumption shall be relaxed, in this paper it allows us to focus on
our “spatial” endogeneity mechanism. Conversely, information about the characteris-
tic structures for each covariate may be difficult to obtain in empirical applications;
while it is not required that the intensity of endogeneity is known (the ξk parameters
are identified and can be estimated) lack of knowledge about its spatial structure can
lead to misspecification. In such cases, we advocate using our approach as a testing

20In this case, the model is still identified following the elimination of selected elements of ξ.
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tool (for example, as part of robustness checks) to verify that the results are not driven
by the spatial cross-correlation between observed and unobserved characteristics. We
illustrate our approach in our empirical application, where conventional estimators
deliver statistically significant social effects, but we are concerned whether these are
driven by some instance of correlated effects.

3.3 Extensions

Finally, we analyze two simple extensions of our framework. First, we show how it can
accommodate multiple networks and the relative fixed effects. Next, we discuss how
the primitive parameters µ and ν from our analytical framework, which are combined
in β, can be identified under certain conditions.

Network-level fixed effects

The use of the third power of G bears some analogies with the scenario analyzed by
Bramoullé et al. (2009), where the adjacency matrix represents a set of disconnected
networks, to each of which is associated a separate fixed effect, and where the use of
indirect connections of third degree is necessary once such fixed effects are partialled
out. The difference is that here, it is necessary to remove the endogenous component
expressed in (22) too. The following corollary is consequent to this observation.

Corollary 1. If the model of interest is:

y = Dα∗ + βGy + Xγ+ GXδ+ ε, (27)

where D represents a set of D dummy variables, each for a separate component of the
network G, and α∗ = (α1, . . . ,αD) is a vector of associated fixed effects, the parameters
θ ≡ (α∗,β,γ,δ,ξ,φ,ψ,σ2) are identified if, in addition to the conditions expressed
in Theorem 1, also matrix G4 is linearly independent of matrices I, G, G2 and G3.

Proof. This follows straightforwardly from “network differencing” equation (27) by
pre-multiplying the data (X,y) by I−G as in Bramoullé et al. (2009). The identifi-
cation of the differenced model would follow as per our previous analysis with α = 0;
the resulting moments are a function of G4 which thus must be linearly independent of
its lower powers. The fixed effects α∗ are residually identified as a subnetwork-specific
set of intercepts.
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Under this approach, also the error term is transformed as (I−G) ε. This poses no
problems to identification and estimation, as the terms λqk in (25) and λp in (26) can
still be calculated, their expressions incorporating the transformation matrix (I−G).

Identification of µ and ν

In our framework, parameter β represents a composite equilibrium effect: it encloses
the direct effect of peers’ effort, ν, amplified by the equilibrium response of individual
effort, (1− µ)−1. Because of Assumption 3 (row-normalization of G) the two param-
eters µ and ν disappear from the reduced form equilibrium equation. However, note
that when this hypothesis is dropped, under our framework (11) becomes:

y = (α− ζ) ι+ βGy + γx + ζḡ + ε, (28)

where ζ ≡ (1− µ)−1 ν logµ and ḡ ≡ Gι is the vector of individual in-degrees (the
overall strength of all one individual’s connections, such that ḡi =

∑N
j=1 gij). Since

exp (ζ/β) = µ, if the observable characteristics xi’s and the network G are exogenous
the primitive parameters µ and ν are separately identified in (28). The intuition is
straightforward: the variation in individual in-degree ḡ conveys additional informa-
tion about the overall strength of direct spillovers (expressed by the parameter ν).21

An individual with more friends or a firm with more connections is likely to enjoy
more beneficial externalities. While row-normalization is routinely assumed in studies
of peer effects, we find the latter to be a realistic hypothesis.22

In our framework, µ and ν are separately identified also under a mildly restrictive
instance of endogeneity.

Corollary 2. Under the conditions expressed by Theorem 1 but Assumption 3, if ḡ is
linearly independent of the unit vector ι or any other covariate X·,k and, in addition,
E
[
ḡTε

]
= 0 holds, then parameters µ and ν are separately identified.

Proof. Re-define the residual as ε (θ, ζ) = y−(α− ζ) ι−βGy−Xγ−GXδ−ζḡ, and
add E

[
ḡTε (θ, ζ)

]
= 0 to the moments from the proof of Theorem 1. One can verify

that this does not affect the rank properties of the matrices examined therein.
21Note that the exact relationship between β, µ and ν depends on functional form assumptions

of our model, but the intuition is more general.
22If individual “effort” ei is observable, an alternative route for the separate identification of µ and

ν would be based on the structural “production function” (2): this is the approach taken in studies
of R&D spillovers, since researchers can typically observe the R&D expenditures of firms.

25



Essentially, if the observable characteristics are endogenous as per Assumption 6, but
the intensity of individual connections is independent of individual unobservables, µ
and ν can be separately identified by adding the additional regressor ḡi. Note that
some form of statistical dependence of the adjacency matrix G on the characteristics
matrices Ck is still allowed. Scenarios where the identifying assumption is violated are
obvious: for example, a very skilled pupil or a very successful firm may find themselves
with more (or more intense) connections. In future work, we plan to examine under
what conditions can µ and ν be separately identified even if that hypothesis fails.

4 Estimation

The moment conditions that support our main identification results lend themselves
naturally to GMM estimation. In this section we describe how the estimation frame-
work introduced by Lee (2007a) can be adapted to our assumed forms of endogeneity.
In doing so, we specialize – as mentioned earlier – to a simple stochastic process that
governs our the error term: a spatial moving average of first degree. This facilitates
the asymptotic analysis, yet the results can be extended to any SARMA process.

Assumption 8. SMA(1) Unobservables: φ = 0 and ψm = 0 for m ≥ 2.

In what follows, we write ψ = ψ1 and θ = (α,β,γ,δ,ξ,ψ,σ2). We also denote the
true parameter values as θ0, we introduce N subscripts, and we define the following
matrices for q = 1, . . . , Q:

Qq,N ≡ XT
NGq−1

N .

Our GMM estimator is based on a set of 1 + QK + P moments conditions, with
Q ≥ 4 and P ≥ 2, that explicitly correct the bias of conventional moments:23

E [mN (θ0)− λN (θ0)] = 0. (29)

To better describe our moment conditions, express the structural residual as:

εN (θ) = yN − αιN − βGNyN −XNγ−GNXNδ,

23We simulated an estimation of our model using moment conditions (17); however, this exercise
is outperformed by the main simulation which is based on the bias-adjusted moments (18), that we
discuss in Section 5. Both sets of moments follow from the same data generation process and thus
should be equivalent, but the linear ones are computationally more convenient.
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hence, it is:

mN (θ) =
[
ιTεN (θ) · · · εTN (θ) QT

q,N · · · εTN (θ) Pp,NεN (θ) · · ·
]T
,

for q = 1, . . . , Q and p = 1, . . . , P . As for vector λN (θ), its first element is given by
λ1,N (θ) = 0, while the others are:

λ1+(q−1)K+k,N (θ) ≡ σ2ξkTr
[
CT
k,NGq−1

N (IN +ψEN)
]
,

for q = 1, . . . , Q and k = 1, . . . , K; and:

λ1+QK+p,N (θ) ≡ σ2Tr
[
(IN +ψEN)T Pp,N (IN +ψEN)

]
,

for p = 1, . . . , P . For some θ, the sample moments are, simply:

mN (θ) ≡ 1

N
[mN (θ)− λN (θ)] , (30)

while our GMM estimator θ̂GMM is the usual minimizer in the parameter space Θ:

θ̂GMM = arg min
θ∈Θ

mT
N (θ) WNmN (θ) , (31)

where WN is a weighting matrix. We derive the asymptotic properties of the estima-
tor under the following additional assumptions.

Assumption 9. Bounded Parameter Space: Θ is bounded.

Assumption 10. Probability Limits of the Covariates: the independent com-
ponent of xik are such that N−1

∑N
i=1 (x̃ik − E [x̃ik]) = oP (1) for all k = 1, . . . , K.

Assumptions 9 and 10 are typical regularity conditions that are necessary to ensure
consistency of the GMM estimator.

Assumption 11. Bounded Characteristics: matrix Ck,N is bounded by Ck <∞,
that is

∑N
j=1 ck,ij < Ck for i = 1, . . . , N , for all k = 1, ..., K.

Assumption 12. Bounded Adjacencies: the network’s adjacency matrix GN and
its corresponding Leontiev inverse (IN − β0GN)−1 are uniformly bounded in both row
and column sums in absolute value.
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Assumption 13. Bounded Moment Matrices: all the matrices (Q1,N , . . . ,QQ,N)

and (P1,N , . . . ,PP,N) used in the moment conditions are all uniformly bounded in both
row and column sums in absolute value.

Assumptions 11-13 all ensure that the moments in question have finite variance. Note
that Assumptions 12-13 have their analogues in Lee (2007a), while Assumption 11 is
specific to our framework. Also observe that bounded adjacencies are implied by the
row normalization of GN . Yet Assumption 12 may be useful when row normalization
is dropped, e.g. if interest falls on the separate identification of µ and ν.

Under the maintained assumptions, one can derive standard asymptotic properties
for our GMM estimator. Extending the next result to more general SARMA processes
or to heteroscedastic primitive shocks is conceptually straightforward but tedious.

Theorem 2. Asymptotics of the GMM estimator. Under Assumptions 1-13,
and holding the identification conditions detailed in Theorem 1, θ̂GMM is a consistent
estimator of θ0 and has the following limiting distribution:

√
N
(
θ̂GMM − θ0

)
d→ N

(
0,
[
JT
0 W0J0

]−1
JT
0 W0Ω0W0J0

[
JT
0 W0J0

]−1)
where (i) Ω0 ≡ plim 1

N
Var [mN (θ0)], (ii) J0 ≡ plim ∂

∂θT
mN (θ0), (iii) W0 ≡ plimWN .

Proof. See the Appendix. The proof is based on the results by Lee (2007a), which in
turn rely on White (1996) as well as Kelejian and Prucha (2001).

The choice of the optimal weighting matrix WN is informed by the same consid-
erations advanced by Lee (2007a), to whom we refer for the details (we use a parallel
notation for the moment matrices Qq,N and Pp,N for ease of comparison). However, in
general, this GMM estimator is not efficient, as efficiency is also affected by the choice
of moments used for estimation. We explore how this affects the finite sample perfor-
mance of the estimator in the next section. Still, one can construct an asymptotically
efficient estimator, as Lee and Liu (2010) did for a spatial autoregression model with
exogenous individual characteristics X. As in the theory of optimal instruments, the
moments must be chosen so that the Jacobian of the moment conditions is equal to
the inverse of the asymptotic variance. Because the moment functions depend on θ
itself, the computation of such moments requires an initial

√
N -consistent estimator;

thus, an efficient estimator would proceed in two steps. We leave the analysis of such
an estimator for future work.

28



5 Monte Carlo

We evaluate the performance of our GMM estimator across Monte Carlo simulations.
These are all based on a minimal data generation process (d.g.p.): the bivariate SAR
model (11) without contextual effects, combined with the spatial linear endogeneity
specification expressed in (7). We study a number of “experiments,” that is groups of
simulations, that differ by the type of the characteristic matrix C used in the d.g.p. to
generate the observable characteristic x. Examples of different such types include the
identity matrix, a matrix with a block structure as in the example from Graph 1, or
functions of a network to which all simulated observations belong. To minimize the
dependence of our results from specific topologies, in all the simulations or repetitions
of an experiment, we generate a new network adjacency matrix G; we do the same for
characteristic structures C with possibly irregular types, e.g. the network functions.
More specifically, all G matrices are randomly generated through the “small-world”
algorithm by Watts and Strogatz (1998) with constant parameters.24 We also let the
error term follow a simple first order spatial moving average process as per Assumption
8, and we set E = G, i.e. the SMA(1) process is governed by the network.

The following expression for the simulated values of y summarizes our d.g.p.:

y = (I− βG)−1 [αι+ γ (x̃ + ξσCυy) + χw + σ (I +ψG)υy]

where w is a vector of N independent draws from the continuous uniform distribution
with support on (0, 1), which we leverage to compare the performance of our estimator
against one based on “external instruments;” χ is a real parameter; υy is a vector of
N independent draws from a standard normal distribution; while x̃ is generated as:

x̃ = 0.3 ·Hυx

where υx are yet N more independent draws from the standard normal distribution,
24By this algorithm, all observations are first ordered along a line and connected to an even number

of B neighbors; this defines an initial set of pairwise binary associations g0,ij = g0,ji ∈ {0, 1}, with
g0,ii = 0 for every node i. Subsequently, all links are subject to random rewiring (the link is deleted,
and one of the two involved nodes becomes connected with a random third node) with probability b.
This procedure yields a new topology g1,ij = g1,ji (still without self-links) with associated adjacency
matrix G1. The final row-normalized adjacency matrix is obtained as G = diag (G1ι)G1. In all our
simulations we set B = 2 and b = 0.25. These choices combined ensure a good overlap between the
network adjacency matrices G and the characteristic matrix C across all our experiments.
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and H is an N ×N matrix that can introduce spatial correlation in the independent
component of x. Like C, the type of matrix H is fixed within an experiment but the
actual topology can vary across repetitions. In all our simulations we set N = 500.

In every experiment, we compare eight estimators against one another. The first
four estimators are variations of our proposed GMM estimator, that are summarized
as follows; (1) a version based on a smaller set of moments, Q = 3 and P = 2, where
P1 = I and P1 = G; (2) a version with more moments, Q = 4 and P = 3, where
P1 and P2 are as before and in addition, P3 = G2; (3) a version with an even larger
set of moments, Q = 5 and P = 4, with additionally P4 = G3; (4) a version like
the latter, but where estimation is based on a “misspecified” characteristic matrix Ce,
as detailed later. All four GMM estimators return estimates for (α,β,γ,χ, ξ,ψ,σ).
The other four estimators are a naïve OLS estimator which takes Gy, x and w as
independent variables, and three different 2SLS estimators based on the following set
of instruments:

Z ≡
[
ι w z Gz G2z

]
. (32)

In (32), it is either (a) z = x, yielding an 2SLS estimator akin to the one proposed by
Bramoullé et al. (2009); (b) z = Gw, yielding a 2SLS estimator solely based on the
exogenous regressor and its spatial lags; or (c) z = Bx, where B is a matrix such that
BC = 0 as per the discussion in Section 3.1, yielding a consistent 2SLS estimator
based on transformations of x that are purged of the endogenous component.25 Thus,
we compare our GMM estimator to several simpler alternatives that are likely to occur
in the empirical practice. These simpler estimators return estimates for (α,β,γ,χ).

We summarize the results of our simulated estimates in Tables 1 and 2. For every
experiment-estimator combination, we report the median and – in parentheses – the
standard deviation of point estimates for the estimated parameters of interest across
1,000 repetitions. We first describe Experiment 1 from Table 1, our “baseline” case, in
depth. In all its repetitions, we set H = I + G (hence the independent component of
x displays cross-correlation) and C is similarly constructed, but instead of G, we add
to the identity matrix a different matrix derived from a “small world algorithm” as per
footnote 24. Because of how that algorithm works, H and C are correlated, though
distinct. The three GMM estimators that are based on a correctly specified matrix
C, as expected, all display a good performance at estimating the real parameters set

25To accommodate those C matrices that are by construction not of full rank, we specify B as
the annihilator matrix based on the Moore-Penrose pseudoinverse C+: B = I−CC+.
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of the d.g.p., which are reported in the table. The number of instruments being used
does not appear too consequential. It is interesting to examine the estimates based
on a misspecified matrix Ce (“GMM4”), which in the baseline case we set as equal
to Ce = I + G = H: this introduces a bias in our estimates, but not a particularly
pronounced one for the main parameters of interests β and γ (unlike the endogeneity
parameter ξ, for which the bias is more pronounced). More conventional estimators
all deliver biased estimates for either β or γ, or both, that are comparable to those
obtained from the misspecified GMM.26 In the case of the third 2SLS estimator (with
z = Bx), the bias seems coupled with an exceedingly large variability of the estimates:
as hinted in Section 2.3, the transformation implied by B is bound to remove much
of the independent variable’s variation, which in turn is likely to exacerbate the bias
of the GMM estimator in small samples.

Experiments 2 through 6 from Table 1 are analogous to the baseline case. All of
them are characterized by different combinations of matrices H and C, which may
include functions of G2 or matrices representing “fully segregated” group structures
as per the discussion in Section 2.3 and the representation of Graph 1 (in this case,
all connections in a group are equally weighted). When we perform GMM estimates
with a misspecified matrix Ce, the latter is typically chosen so as to be fairly, but not
overly similar to the true C; for example, if C has a group structure, Ce is obtained
by splitting the original groups in half. The results are qualitatively very similar to
the baseline case. The main difference is that when C has a group structure, the third
2SLS estimator with z = Bx performs much better, as the implied transformation is
akin to the conventional within-transformation for panel data.27 Table 2 shows the
results from additional simulations, all built around the baseline: Experiments 7 and 8
attempt alternative values for β and γ, respectively; Experiments 9 and 10 shut down
the entire endogeneity channel (ξ = 0) or the error terms’ SMA(1) process (ψ = 0),
respectively; lastly, Experiments 11 and 12 increase the variance of two key elements
of the d.g.p.: the error term and the independent component of x, respectively. The
interpretation of all those results is the same as in the baseline case.

26Notably, the 2SLS estimates for β when z = w are not biased, but the bias associated with γ
appears larger. In general, in all these experiments β seldom displays a larger bias; this is likely due
to the inclusion of w in our d.g.p. and of moments based on it across all our estimators. In different
Monte Carlo simulations that omit w, which we experimented with (though we do not report them
here for the sake of brevity), the bias associated with β is typically larger.

27Also note that when C = I+G+G2 and Ce = I+G (Experiment 3) the misspecification bias
does not appear sizable, not even in the case of parameter ξ.
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In summary, the GMM estimator that we propose appears to perform well, and
while it has demanding requirements (mainly the knowledge of the true characteristic
matrix C), departures from the ideal scenario – such as the misspecified estimates
that we examine – do not seem to yield worse estimates than those obtained from
more conventional estimators; in some cases the estimates for the main parameter of
interest β are very similar to those obtained via exogenous instruments, which may
also be hard to obtain. With the exception of the quite regular case where C has a fully
segregated group structure, transformations of the data that purge the endogenous
component of x do not seem to be a viable alternative. All these considerations make
a case in favor of our proposed estimator in the applied econometric practice.28

6 Empirical Application

To illustrate how our proposed method can help account for correlated effects in an
actual empirical study about social effects, we leverage both the setting and data from
the influential study by De Giorgi et al. (2010), which provides estimates about peer
effects in major choice between students who started their undergraduate studies at
Bocconi University in Italy in 1998.29 A key feature of this paper is that peer groups
are shaped according to a non-overlapping, networked structure of social interactions
G that is determined exogenously. Specifically, students from different undergraduate
programs at Bocconi University used to take common foundational courses over their
first year and a half of studies; there were multiple, parallel versions of each common
course, and freshmen were randomly allocated into them. In the original paper, the
authors defined two students as “peers” if they had been classmates in a given number
of common courses out of seven, with the idea that the bonds established by students
over their first semesters of study would affect later choices about major.30 We refer
to the original paper for a full-fledged description of the setting and data.

28We also obtained separate results that alter the parameters of the small-world algorithm with
respect to the baseline, by either setting B = 4 or b = 0.9 (see footnote 24). While we do not report
these results for brevity, they display patterns that are qualitatively identical to the baseline’s.

29Bocconi University offers undergraduate and graduate programs in Economics, Finance, Business
Administration, and – to a lesser extent – in other Social Sciences.

30There were in total nine common courses, of which two were in legal subjects and were excluded
by the authors. The two law classes had unusually low attendance rates and thus a lower number of
parallel sessions; consequently, including them in the count would inappropriately inflate the number
of peers that each student has.
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6.1 Specification and summary statistics

We estimate an augmented version of the SAR model (11) on the data provided by
De Giorgi et al. (2010), using the same (row-normalized) adjacency matrix G from
their favorite specification of the network structure, where two students are defined as
“peers” if they attended together at least four common courses. However, our revisited
analysis differs from the original in two main respects. First, we examine two, rather
than one outcomes of interest yi. In the original paper, yi is a dummy variable that
denotes major choice (Economics vs. Business): hence, it contradicts the assumptions
about the error term maintained in our linear framework. Thus, we largely focus on a
different, yet interesting per se outcome variable that we write as y(1)i , that is measured
on a more continuous scale: the later Bocconi GPA31 that excludes the initial common
courses. For the sake of comparison, we also report results that use the original binary
outcome, that we write as y(2)i . Second, we leverage a specific right-hand side variable
xi to construct identifying moment conditions for different estimators: i.e. the grade
received by students in high school final exams.32 This variable has strong predictive
power towards both outcomes yi, but we suspect it to be endogenous. Third, in most
specifications we omit contextual or “exogenous” effects, as we find that they typically
lead to noisier estimates that complicate comparisons across methods.

Our econometric specification is summarized as follows, for o = 1, 2:

y
(o)
i = β

N∑
j=1

gijy
(o)
i + γxi + δ

N∑
j=1

gijxj +
K′∑
k=1

χkwki + εi, (33)

though in most cases we impose the restriction δ = 0. TheK ′ right-hand side variables
wki in (33) are additional controls that largely overlap with those in the original study:
dummies about gender, residence status in Milan, a student’s region of origin, type of
high school degree (technical school versus academic-oriented “liceo”), and a student’s
household income being classified in the top bracket. Among all these controls, we pay
special attention to the female dummy; we denote the associated parameter by χfe.

31In Italian universities like Bocconi, grades are awarded over a scale of 30 points, with 18 being
the passing grade. A GPA in Italy is a weighted average of all exam grades; with weights measuring
the relative hours load of a particular course.

32In Italy, completion of high school is conditional upon passing a centrally-managed nationwide
exam (which differs by type of high school, e.g. technical versus academic-oriented “licei”); grades in
this exam are awarded over a scale of 100 points, with 60 being the passing grade. In the data xi is
rescaled on a zero-to-one measure.
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The original study included some additional variables: more specifically, the logarithm
of household income and the Bocconi admission test score. We treated the latter both
as candidates for our xi predictor; just like our chosen xi (the high-school grade) they
are likely to be endogenous. While experimenting with our proposed GMM approach,
however, we found that both candidates typically lead to noisier estimates across all
estimators. Since we focused on approaches to address the endogeneity of our favorite
predictor xi, we chose for the sake of consistency to omit other potentially endogenous
regressors from the right-hand side of (33) across all specifications we discuss next.33

We provide some key summary statistics in Table 3; we refer to the original study for
more extensive data description and additional statistics.

Table 3: Main variables of interest: summary statistics

y(1) Gy(1) y(2) Gy(2) x Gx wfe

Mean 26.752 26.755 0.127 0.129 0.863 0.864 0.396
(St. dev.) (2.049) (0.522) (0.333) (0.088) (0.112) (0.027) (0.489)

Notes. This table reports the mean and the standard deviation of key variables,
denoted in the column headers by their corresponding compact notation (e.g., x
is the vector of xi observations; wfe is the vector of female dummies). Across all
calculations the sample size equals N = 1, 141. St. dev.: standard deviation.

While we believe that our chosen xi variable is representative of a student’s prior
educational achievements or background, as hinted we suspect it to be endogenous.
In fact, it is likely to depend upon the unobserved individual ability or motivation, as
encoded in the error term εi, that also affect the outcomes yi. This would not affect the
identification of social effects if such unobserved components were independent across
students. However, there are reasons to suspect the existence of a spatial correlation
between the error terms of different students which occurs along geographical lines.
Note that Bocconi is a prestigious university within Italy, certainly not a cheap one to
attend by national standards;34 while located in Milan in Lombardy, about half of its
student body hails from outside that region. For such students the cost of attending

33The original study also included a significant predictor of major choice: a dummy variable that
indicates whether a student declared Economics (instead of Business) as their favorite major before
taking the final decision at the end of the initial common courses. This is an obvious instrument for
the identification of social effects in our secondary outcome of interest: major choice, and we have no
reason to suspect it endogenous. As the objective of our analysis is to showcase our proposed method
in a real setting where endogeneity is salient, we chose to omit this variable from the analysis.

34We would like to remark that neither of us has graduated from or has been employed at Bocconi
University. One of us briefly attended one of its undergraduate programs before dropping out.
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Bocconi is higher in comparative terms; thus, they are likely to be representative of
a relatively more (self-)selected subset of the population of potential students. This
may be especially salient for those students coming from those central and southern
regions of Italy (about one fourth of our sample) with a markedly lower income per
capita and higher overall costs for attending Bocconi.

In light of these observations, we model endogeneity similarly to (10):

xi = x̃i + ξεi, (34)

while introducing cross-correlation in the error term as follows:

εi =
N∑
i=1

cijυi, (35)

with cii = 1 for i = 1, . . . , N . Together, (34) and (35) are combined as a specification
of the high-school mark xi that is consistent with Assumption 6 and hence, with our
econometric model (the weights cij are collected in matrix C). Note that (35) treats
the error term as a spatial MA(1) process with a fixed parameter; although we could
estimate this parameter through our procedure, we prefer to assume the entire spatial
structure of the errors so as to keep the analysis as simple as possible. Specifically, we
experiment with two main types of structure, that are defined in terms of the spatial
correlation of the error term as expressed by matrices of the CCT kind.

1. The first type is based on a distance decay specification as in (8) with D = 1,
i.e. Cov (εi, εj) ∝ N−1 exp (−dij) for every pair (i, j), where dij is the distance
between the geographical centroids of two students’ provinces of origin.35 We
derive a characteristic matrix consistent with this pattern by eigendecomposing
the target variance-covariance matrix. We denote such a matrix by Cd.

2. The second type features “fully segregated group structures” such that:

Cov (εi, εj) ∝ h (|H (i)|) · 1 [j ∈ H (i)]

where H (i) denotes a specific geographical area that student i belongs to, while
h (·) is a function that is decreasing in its argument |H (i)|, defined as the size

35Provinces are traditional administrative units of Italy. In 1998 there were 101 provinces, grouped
in 20 larger regions. We set dij = 0 if i = j or the two students hail from the same province.
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of group H (i) in the data. This is achieved by specifying characteristic matrices
featuring cii = 1 and cij = |H (i)|−1 1 [j ∈ H (i)] for every pair (i, j). We denote
such matrices (we work with two of them) by Ch1 and Ch2.

The second type deserves more discussion. First, we make the covariance decreas-
ing in |H (i)| as we expect larger groups or areas to be more heterogeneous. Second,
note that the definition is silent about what geographical areas encoded in H (i) are
to be employed in the empirical analysis. Thus, we experiment with two definitions,
respectively leading to Ch1 and Ch2. The first one is based on those polities that ex-
isted in the Italian territory before the historical process of political unification of the
Italian peninsula was set in motion in 1859.36 The second one one is based upon the
classification of Italian provinces by the regional language that is traditionally most
widely spoken in the local area.37 Both definitions correspond to different groupings
of Italian provinces, which often transcend the borders of modern regions. We expect
both to capture similarities in history, subculture and economic structure of different
provinces or areas.38

Some considerations are common across all characteristics matrix that we employ.
First, they comply with identification condition (ii) spelled out by Theorem 1. Second,
they also comply with Assumption 11, as required for Theorem 2. Third, their entries
are fairly comparable in magnitude. Table 4 qualifies these statements quantitatively:
it reports, for our three characteristic matrices, the means and the standard deviations
of the elements of the diagonal of CG, as well as of the entries of either triangle of
CCT. The former verifies that condition (ii) of Theorem 1 holds in our setting. The
latter, in conjunction with our estimates of parameters ξ and σ2, allow to evaluate
the patterns of spatial correlation as implied by a given structure. While none of the
characteristic matrices that we use is likely to capture the true spatial correlation, we
expect them all to approximate it to some degree.

36There are a few differences between the H (i) groups we use to construct Ch1 and the 1859 po-
litical map of Italy. First, we detach both Sardinia and Sicily from their parent kingdoms (“Sardinia-
Piedmont” and “Two Sicilies”). Second, we split Lombardy-Venetia into its constituent parts. Third,
we treat the two small historical duchies of Parma-Piacenza and Modena-Reggio as one polity.

37Italian traditional regional languages, such as Lombard, Friulian, Neapolitan or Sardinian, are
still widely spoken nowadays. Although most of them belong to the Romance linguistic family, they
often lack mutual intelligibility, hence their colloquial denomination as “dialects” may be erroneous.

38It is important to comment on how we treat the non-Italian students (less than 2 per cent of
the dataset). In the construction of Cd they are treated as hailing from an additional, very distant
“province.” In the matrices of the Ch kind instead, they are identified as a separate block.
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Table 4: Characteristic matrices: summary statistics

Diagonal of CG Upper/lower triangle of CCT

Cd Ch1 Ch2 Cd Ch1 Ch2

Mean 0.0001 0.0009 0.0009 0.0006 0.0026 0.0026
(St. dev.) (0.0078) (0.0006) (0.0008) (0.0002) (0.0066) (0.0072)

Obs. N = 1, 141 N (N − 1) /2 = 650, 370

Notes. This table reports, for the three definitions of C used in the analysis that
are indicated in each column header, the mean and the standard deviation of the
N elements of the diagonal of CG (left panel), or of the N (N − 1) /2 elements of
either the lower or the upper triangle, diagonal excluded, of CCT (right panel).
St. dev.: standard deviation; Obs.: observations.

Before proceeding to our estimation results, it is worthwhile to discuss the raw
patterns of spatial correlation in the data. Specifically, we calculate a set of Moran’s I
statistics of spatial correlation, along with their associated standard errors (Kelejian
and Prucha, 2001), for both outcome variables yi, and our key regressor xi, as implied
by the pattern of spatial correlation CCT that obtains from our three characteristic
matrices we defined. In addition, we calculate Moran’s I statistic defined in terms of
matrices G and G2. All these calculations are reported in Table 5: two observations
are in order. First, all Moran’s I statistics based on the three characteristic matrices
are positive and statistically significant, while the values associated with the regressor
xi is typically 4-6 times larger in magnitude than the corresponding values for the
outcomes yi (as one would expect if the components of the variance of yi other than
xi and εi featured no spatial correlation). This suggests that the C matrices may be
capturing some relevant spatial correlation. Second, the Moran’s I statistics based on
G are much noisier, as one would expect if G is random. Notably, the ones calculated
for the key regressor xi are actually negative, with two-tailed p-values around 0.096.
This suggests that there may be sources of negative spatial correlation in the data,
for example in the independent component x̃i of the regressors.

6.2 Empirical estimates

We now turn our attention to different set of estimates of model (33), obtained through
different approaches. We begin by reviewing estimates based on conventional meth-
ods: OLS and IV/2SLS estimators, that are collected in Table 6. The first panel of
the table, in particular, reports results for the y(1)i outcome: the later Bocconi GPA.
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Table 5: Moran’s I Statistics

Variable CdC
T
d Ch1C

T
h1 Ch2C

T
h2 G G2

y1 0.0054 0.0395 0.0434 0.0094 -0.0007
(0.0003) (0.0032) (0.0034) (0.0104) (0.0043)

y2 0.0059 0.0240 0.0234 0.0100 0.0042
(0.0003) (0.0032) (0.0034) (0.0104) (0.0043)

x 0.0247 0.1320 0.1192 -0.0174 -0.0074
(0.0003) (0.0032) (0.0034) (0.0104) (0.0043)

Notes. This table reports Moran’s I statistics, along with their asso-
ciated standard errors (in parentheses), for all combinations given by
the variables indicated in the first column and the matrices listed in
the column headers (with diagonal elements uniformly set at zero).
Across all calculations the sample size equals N = 1, 141.

Columns (1) provides the baseline OLS estimate, with an associated estimate of social
effects in the order of β̂ ' 0.1. Naturally, OLS yields inconsistent estimates of a SAR
model by construction, yet these “results” are useful for comparison’s sake. Column
(2) reports OLS estimates that drop the restriction δ = 0, thus introducing exoge-
nous effects into the model. This leads to an updated estimate of social effects with a
reverted sign: β̂ ' −0.1 (though it is not statistically significant) and an estimate of
the exogenous effect in the order of δ̂ ' 6.0, about half the estimate of γ̂. Column (3)
reports estimates from an extension of the baseline model (without δ = 0) that, in
an attempt to control for local invariant characteristics, includes fixed effects at the
level of Italian provinces (the students’ provinces of origin). The resulting estimates
are very similar to those from column (2), which suggests that attempts to control
for additional factors may push the estimate of β downwards.

Columns (4) through (7) of Table 6 reports IV/2SLS estimates à la Bramoullé
et al. (2009) for the y(1)i outcome, using different specification and sets of instruments.
Column (4) reports results for the baseline model in the just-identified case, leading
to an estimate of social effects in the order of β̂ ' 0.3. This value is higher than the
baseline OLS results from column (1), as is typical when correcting for simultaneity
biases. Column (5) reports results obtained by adding that feature exogenous effects
(identified off farther spatial lags of x): the estimate of β̂ increases even further, but it
is no longer statistically significant. Moreover, δ̂ is also estimated negative and noisy,
which suggests (corroborating our wary attitude towards exogenous effects, for the
reasons outlined in the discussion of Proposition 3) that not restricting δ = 0 is not
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Table 6: Empirical estimates: conventional methods

Outcome variable: y(1)i (later career GPA)

(1) (2) (3) (4) (5) (6) (7)

β 0.113 -0.086 -0.082 0.319** 0.571 0.353** 0.131
(0.088) (0.123) (0.124) (0.136) (0.878) (0.139) (0.360)

γ 11.419*** 11.449*** 11.451*** 11.390*** 11.327*** 11.368*** 10.763**
(0.523) (0.524) (0.516) (0.525) (0.551) (0.522) (4.151)

δ – 5.956 – – -2.660 – –
(3.430) (11.546)

χfe 0.229** 0.228** 0.273*** 0.234** 0.227** 0.273*** 0.262
(0.101) (0.101) (0.101) (0.101) (0.101) (0.101) (0.235)

Outcome variable: y(2)i (economics major choice)

(8) (9) (10) (11) (12) (13) (14)

β 0.116 0.067 0.074 0.359 -3.586 0.115 0.634
(0.105) (0.112) (0.112) (0.448) (26.900) (0.410) (0.496)

γ 0.588*** 0.598*** 0.652*** 0.589*** 0.648 0.643*** 0.114
(0.096) (0.096) (0.095) (0.096) (0.401) (0.095) (0.861)

δ – 0.044 – – 2.595 – –
(0.416) (18.784)

χfe -0.017 -0.016 -0.023 -0.018 0.003 -0.023 0.005
(0.020) (0.020) (0.021) (0.020) (0.140) (0.020) (0.049)

IV z1 Gy Gy Gy x x x Gwfe

IV z2 x x x Gx Gx Gx G2wfe

IV z3 – Gx – – G2x – –
PFEs NO NO YES NO NO YES NO
Obs. 1,141 1,141 1,132 1,141 1,141 1,132 1,141

Notes. Each column in this table reports OLS or IV/2SLS estimates of model (33), for both out-
come variables as indicated in the headers of the top and bottom panels. Most estimates incorpo-
rate the restriction δ = 0 (no exogenous effects) unless they report an estimate for δ. All estimators
are based upon orthogonality conditions between the error term and: (i) a constant vector; (ii) the
wki controls; (iii) two or three “instruments” (IVs) z1, z2 or z3 as specified in each column; z3 only
appears in models featuring the exogenous effect. The “IV” z1 = Gy indicates OLS estimates. The
vector wfe represents the (stacked) female dummy. “PFEs” indicate that the estimates accommo-
date Province Fixed Effects: in this case, the data undergo a preliminary within transormation that
removes province-specific averages from all variables, as well as observations (students) who are the
sole representative of a province in the original sample. Point estimates for parameters other than
β, γ, δ, and χfe are omitted. Standard errors are in parentheses. Asterisk series: *, **, and ***;
denote statistical significance at the 10, 5 and 1 per cent level, respectively. Obs.: Observations.

statistically appropriate in this setting. Column (6) adds province fixed effects to the
baseline IV/2SLS of column (4), with implications analogous to the parallel exercise
in OLS. Finally, due to the concern that the regressor xi is endogenous, we also
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attempt an IV estimator solely based on an instrument whose plausible exogeneity is
easier to defend (though not assured): the female dummy. The resulting estimates,
reported in column (7), are similar to those from baseline OLS, though much noisier
– perhaps due to a weak instrument problem.39

A few additional observation about Table 6 are in order. First, the estimates for
the binary outcome y(2)i in the bottom panel have a similar interpretation to those
of the main outcome across all estimators. In particular, estimates of social effects
rise from around β̂ ' 0.1 to about six times that value when moving from OLS to
IV/2SLS, though none of these are statistically significant (recall that we adopt a
specification and instruments set that differ slightly from the original paper).40 Even
for the binary outcome, models that include the exogenous effect appear to yield very
noisy estimates of both β and δ. Second, for both outcomes the estimates of γ appear
robust to the choice of the estimator, specification, and instrument set.41 Finally, for
both outcomes we also experimented with overidentified 2SLS estimators featuring
instruments of the kind Gsx for s ≥ 2. The results, not reported for brevity, do not
seem to substantively affect the main estimates.

Next, we discuss estimates obtained via our proposed GMM approach: collected in
Table 7. All specifications in this table incorporate the restriction δ = 0.42 We focus
on outcome y(1)i first. Column (1) reports results for the baseline specification of the
later career GPA that uses characteristic matrix Cd, the one based on geographical
spatial decay, to model the spatial endogeneity of x. The estimate for β is notably
very small, negative, and not statistically significant: we consider it a statistical zero.
Instead, the estimates of γ and χfe are in line with those from Table 6, while the

39This can be due to an attempt to estimate the full model, including the γ parameter, with this
particular set of instruments – we find it intrinsically interesting to understand whether high school
performance carries over in college. If interest lied in estimating social effects only, one could drop γ
from the model and obtain more precise estimates, at the cost of a narrower LATE-like interpretation
of social effects (in this case, mediated by the share of females among one’s peers).

40In the original paper by De Giorgi et al. (2010), the baseline 2SLS estimates of β are in the
order of 0.07. These are obtained using instruments based on the spatial lags of three x variables:
the high school final grade, the score at the Bocconi admission test, and the dummy indicator about
a student’s preference for economics observed before the actual choice about major is taken.

41These estimates indicate that on average, ten extra points in the high school final exam (on a
scale of 100) are associated, on average, with 1-1.2 extra points in the later career GPA (on a scale of
30) and a probability to choose Economics as major which is higher by about six percentage points.

42While experimenting with GMM specifications that include exogenous effects, we observed that
they typically lead to noisier estimates of key parameters but neither to economically nor statistically
significant estimates of δ, similarly to the patterns shown by conventional estimators from Table 6.
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Table 7: Empirical estimates: proposed GMM approach

Outcome variable: y(1)i (later career GPA)

(1) (2) (3) (4) (5) (6) (7)

β -0.014 0.144** 0.144** -0.016 -0.015 0.078** 0.112***
(0.033) (0.059) (0.059) (0.034) (0.033) (0.031) (0.039)

γ 11.915*** -1.135 -1.132 12.046*** 11.952*** 5.499*** 2.324
(0.496) (5.919) (5.911) (0.634) (0.504) (1.516) (2.811)

χfe 0.201*** 0.865*** 0.865*** 0.195*** 0.200*** 0.529*** 0.690***
(0.055) (0.302) (0.302) (0.059) (0.056) (0.090) (0.149)

ξ 4.321** 0.059*** 0.059*** 5.473* 4.621** 0.034*** 0.048***
(2.152) (0.017) (0.016) (3.171) (2.064) (0.008) (0.011)

σ2 1.586*** 2.000*** 2.000*** 1.587*** 1.586*** 1.686*** 1.815***
(0.018) (0.353) (0.353) (0.019) (0.018) (0.056) (0.136)

Outcome variable: y(2)i (economics major choice)

(8) (9) (10) (11) (12) (13) (14)

β 0.058** 0.062* 0.062* 0.059** 0.059** 0.058* 0.059*
(0.028) (0.036) (0.036) (0.029) (0.029) (0.030) (0.033)

γ 0.610*** -1.271 -1.271 0.614*** 0.612*** -0.400 -0.951
(0.060) (0.837) (0.836) (0.071) (0.062) (0.433) (0.669)

χfe -0.017* 0.078* 0.078* -0.018* -0.018* 0.034 0.062*
(0.010) (0.042) (0.042) (0.010) (0.010) (0.023) (0.034)

ξ 1.026 0.048*** 0.048*** 1.227 1.099 0.029** 0.042***
(1.282) (0.017) (0.017) (1.908) (1.378) (0.012) (0.015)

σ2 0.316*** 0.048*** 0.048*** 0.316*** 0.316*** 0.331*** 0.350***
(0.005) (0.016) (0.016) (0.005) (0.005) (0.013) (0.029)

δ = 0 YES YES YES YES YES YES YES
C Cd Ch1 Ch2 Cdh1 Cdh2 I + G I + ½G
Obs. 1,141 1,141 1,141 1,141 1,141 1,141 1,141

Notes. Each column in this table reports estimates of model (33), using the GMM estimator de-
scribed in Section 4, for both outcome variables as indicated in the headers of the top and bottom
panels. All estimates incorporate the restrictions δ = 0 and ψ = 0. Estimation is performed under
the assumption that variable xi is endogenous as per (34) and (35) for some characteristic matrix
C which is specified in each column, and that is incorporated in the GMM moment conditions.
Point estimates for parameters other than β, γ, χfe, ξ and σ2 are omitted. Standard errors are in
parentheses. Asterisk series: *, **, and ***; denote statistical significance at the 10, 5 and 1 per
cent level, respectively. Obs.: Observations.

estimate of the key parameter that quantifies endogeneity is in the order of ξ̂ ' 4.3,
and is statistically significant. Columns (2) and (3) instead report estimates based
on the two characteristic matrices Ch1 and Ch2 constructed from fully segregated
groups of students defined by the historical polity of linguistic subgroup to which
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their home provinces belong. These results are virtually identical and, unlike those
from column (1), they register a positive and statistically significant estimate of β, a
small and statistically significant estimate of ξ, and a negative estimate of γ, though
with standard errors that are large enough so that confidence intervals at conventional
levels cover positive values close to the estimates of γ from Table 6.

How to make sense of these divergent results? We find the difference in magnitude
of the estimates of ξ quite revealing. Note that the square of ξ, multiplied by selected
off-diagonal values of CCT, delivers an estimate of the endogenous component of the
spatial correlation of x between any two observations. Given the figures in Table 4,
for the average pair of students this estimate equals about 0.012 for Cd (in the same
order of magnitude of the estimated Moran’s I ) and a negligible number close to 10−5

for Ch1 and Ch2. We argue that the latter two matrices do not adequately capture a
meaningful endogenous pattern of spatial correlation in the data: forcing them into
our model is not enough to correct for the bias in β, but it effectively introduces a
source of noise in the transformed regressors of the moment conditions (17) which is
likely to attenuate the estimate of γ. We find this problem analogous to the one of
weak instruments in standard IV/2SLS, and we find the full-fledged analysis of its
implications worthy of future work. This said, we draw two implications from these
results. First, our approach can lead to estimating statistically insignificant social ef-
fects in settings where conventional approaches estimate them as significant. Second,
the choice of the characteristic matrix matters. We suggest that applied researchers
interested in testing whether their results about social effects are maintained after im-
plementing our method (for example, when performing robustness checks) experiment
with multiple plausible characteristic matrices.

To corroborate these observations, we proceed in two directions. First, we estimate
our GMM model using two matrices Cdh1 and Cdh2 defined as:

Cdh1 ≡ Cd ◦ 1 [Ch1 > 0]

where ◦ denotes the Hadamard (element-wise) product whereas 1 [Ch1 > 0] indicates,
with some abuse of notation, the N×N binary matrix with entries equal to 1 for cor-
responding positive entries of Ch1, and zero otherwise; Cdh2 is defined symmetrically.
We refrain from providing any deep interpretation to these matrices: we merely treat
them as an exercise in misspecification, asking ourselves whether a perturbation to
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matrix Cd guided by reasonable a-priori criteria (as per the “groups” expressed in the
Ch1 and Ch2) affects the results substantively. The results, given in columns (4) and
(5) of Table 7, are reassuring, as they hardly differ from those of column (1). We also
experiment with GMM estimates based on characteristic matrices that are function of
the network adjacency matrix: namely, I + G and I + ½G. The results in columns (6)
and (7) are similar to those based on Ch1 and Ch2: this is hardly surprising because
G is exogenous in this particular setting, and hence it is also unlikely to capture any
meaningful endogenous component of spatial correlation.

Some additional comments about our GMM results are in order. First, estimates
about the binary outcome y(2)i (bottom panel of Table 7) present patterns analogous
to the estimates about y(1)i . Notably, social effects are always estimated statistically
significant and in a neighborhood of β̂ ' 0.06, a figure very close to the main results
by De Giorgi et al. (2010). Moreover, the results based upon our favorite characteristic
matrix Cd do not register a statistically significant estimate of ξ. This suggests that
unobserved preferences towards majors – economics versus business administration –
are unlikely to follow geographically correlated patterns.43 Second, observe that none
of the seven characteristic matrices we experimented with admits a straightforward
transformation of the kind BC = 0, as per the discussion from Sections 2.3 and 5.
Thus, we derived B from the Moore-Penrose pseudoinverse of each matrix C and in
each case, we estimated model (13) via IV/2SLS for both outcomes of interest. The
results from this exercise are reported in the appendix: they often feature unrealistic
point estimates and large standard errors, suggesting that for non-trivial characteristic
matrices, this approach may be unreliable in practical applications.

7 Conclusion

In this paper we have shown that, under certain configurations of the underlying socio-
economic relationships that determine the characteristics and relevant outcomes of
economic agents, it is possible to identify and estimate peer or social effects within
a standard spatial econometric framework, even if the right-hand side characteristics
are themselves endogenous. The requirements for identification are quite general: it

43However, the estimates of ξ implied by characteristic matrices like Ch1, Ch2 and I + G, while
very small in magnitude, are registered statistically significant. This could be a byproduct of using
“weak” characteristic matrices, something we plan to investigate further in future work.
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suffices that the network of social interactions is exogenous, not fully-overlapping in
only a slightly stronger sense relative to the identification conditions by Bramoullé
et al. (2009), and that the spatial structure of endogeneity (the dependence of indi-
vidual covariates on peers’ unobservables) is known by the econometrician up to a
multiplicative constant. This approach can be applied to studies about peer effects
where the the right-hand side individual characteristics used for identification are
possibly endogenous and affected by correlated effects. In our empirical application
based on the study by De Giorgi et al. (2010), we show that applying our approach
under different specifications of the spatial structure of endogeneity can lead to pre-
cise zero estimates of the social effects, while conventional methods would estimate
positive and statistically significant effects.

We envision three areas for future work. First, we plan to extend our approach
to more general specifications of the stochastic process driving endogeneity, such as
non-linear ones or with conditionally heteroscedastic primitive errors. To this end, we
plan to investigate the applicability of semi-parametric estimators or control function
approaches that are less reliant upon linear functional forms. Second, we plan to relax
the assumption about exogeneity of the network G, by incorporating either control
function methods à la Arduini et al. (2015) or Johnsson and Moon (2021), or a GMM
approach for panel data in the spirit of Kuersteiner and Prucha (2020).44 Third, and
last, we believe it would be worthwhile to integrate the recent literature that exploits
penalized estimators in order to recover an unknown network structure (Rose, 2017b;
de Paula et al., 2019) within our framework. Specifically, we believe that with partial
information about the network structure, this kind of approaches may help identify an
unknown characteristics structure C, or the SARMA structure of the error term, and
thus mitigate the main requirement of our approach: that is, the a priori knowledge
of the structure in question.

44Note that in our setup, it is already possible to relax this assumption. Consider for example the
simple linear specification of endogeneity discussed at length in subsection 2.3. If (14) were replaced
with:

E [ x̃|G,C, ε] = 0.

our derivation and identification result would hold regardless. What is key is that either the struc-
tural error term ε or the independent component of individual characteristics x̃ is mean independent
of the network structure (and the characteristics structure too). The plausibility of either hypothesis
depends on the empirical application; in this paper we have maintained the former, rather than the
latter, for ease of exposition. A further idea for future work is to examine which models of network
formation – intended as restrictions on F (·) – are consistent with these assumptions.
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Appendix – Mathematical Proofs

Proof of Theorem 1

Preliminaries. Before proceeding to the extended proof of the Theorem, it is useful
to establish some notation. Let θ1 ≡ (α,β,γ,δ), θ2 ≡ (φ,ψ),

ΨAM (θ2) ≡ (I− φ1F1 − · · · − φAFA)−1 (I +ψ1E1 + · · ·+ψMEM) , (A.1)

and:
ε (θ1) ≡ y − αι− βGy −Xγ−GXδ,

as well as:
u (θ) =

1

σ
Ψ−1AM (θ2) ε (θ1) ,

an object that exists only so long as ΨAM (θ2) is nonsingular. In the proof, we express
key functions of interest in terms of “impostor” parameter vectors that have the same
length as our parameters of interest (or subsets thereof). We denote such vectors by
a small tilde, e.g. φ̃ or ψ̃. We assume that σ̃ > 0 and importantly, that without loss
of generality φ̃ and ψ̃ always lie within the unit circle, and that:

ΨAM

(
θ̃2

)
≡
(
I− φ̃1F1 − · · · − φ̃AFA

)−1 (
I + ψ̃1E1 + · · ·+ ψ̃MEM

)
, (A.2)

is always nonsingular. Failing these assumptions, by construction the values of σ̃, φ̃
and ψ̃ cannot be mistaken for the true values of φ and ψ, and thus our identification
proof would be moot as far as the structure of the error term’s variance-covariance is
concerned.

It is also useful to further elaborate on the expressions (A.1) and (A.2):

ΨAM (θ2) =

(
I−

A∑
a=1

φaFa

)−1 [(
I +

M∑
m=1

ψ̃mEm

)
+

M∑
m=1

(
ψm − ψ̃m

)
Em

]
,

Ψ−1AM

(
θ̃2

)
=

(
I +

M∑
m=1

ψ̃mEm

)−1 [(
I−

A∑
a=1

φaFa

)
+

A∑
a=1

(
φa − φ̃a

)
Fa

]
.

Hence, the product ΦAM

(
θ2, θ̃2

)
≡ Ψ−1AM

(
θ̃2

)
·ΨAM (θ2) can be expressed as:

ΦAM

(
θ2, θ̃2

)
= I +

M∑
m=1

Υψ
m

(
ψm − ψ̃m

)
+

A∑
a=1

Υφ
a

(
φa − φ̃a

)
+

+
M∑
m=1

A∑
a=1

Υψ,φ
ma

(
ψm − ψ̃m

)(
φa − φ̃a

)
(A.3)
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where (Υψ
1 , . . . ,Υ

ψ
M) is a collection of some M matrices, (Υφ

1 , . . . ,Υ
φ
A) is a collection

of soome A matrices, and (Υψ,φ
11 , . . . ,Υψ,φ

1A , . . . ,Υψ,φ
M1 , . . . ,Υ

ψ,φ
MA) is some collection of

MA matrices. All these collections are functions of θ2, θ̃2, as well as of both the Em

and the Fa matrices. One can verify that the matrices within each of these collections
are mutually linearly independent if the matrices of the Em kind as well as of the Fa

kind are themselves mutually linearly independent, as maintained by Assumption 5.

Proof proper. Define the following set of moment functions:

g0 (θ) = ιTu (θ)

g1,qk (θ) = xT
kGq−1u (θ)− ξkλ∗1,kq for k = 1, . . . , K and q = 1, . . . , Q,

g2,p (θ) = u (θ) Ppu (θ)− λ∗2,p for p = 1, . . . , P,

where Q ≥ 4, P ≥ 1 + A+M , and:

λ∗1,kq ≡ Tr
(
CT
kGq−1) ,

λ∗2,p ≡ Tr (Pp) .

Observe that these moment conditions differ slightly from those described in Section 4.
We stack these moments vertically to make up the vector g (θ) of length 1+QK+P .
This proof shows that the the expectation of g (θ) is set at zero by a unique vector
of parameter values, or structure. It is useful to partition g (θ) in two blocks: g1 (θ),
which collects the first 1 +QK moments, and g2 (θ), which collects all the remaining
P moments. We analyze the expectations of these two blocks in sequence.

Following some manipulation, the expectation of the first block can be written as
a function of an impostor parameter vector θ̃ as:

E
[
g1

(
θ̃
)]

=
1

σ̃
E
[
(Kx̃ + Ku)T ·Ψ−1AM

(
θ̃2

)
· (Sx̃ + Su)

] (
θ1 − θ̃1

)
+

+
σ

σ̃
E
[
(Kx̃ + Ku)T ·Ψ−1AM

(
θ̃2

)
·ΨAM (θ) · υ

]
−Λξ̃ (A.4)

where Kx̃ and Ku are two matrices of dimension N × 1 +QK, while Sx̃ and Su are
two matrices of dimension N × 2 (1 +K):

Kx̃ ≡
[
ι X̃ GX̃ . . . Gq−1X̃

]
,

Ku ≡
[
0
[
I G . . . Gq−1] [ιTQ ⊗ [[C1υ . . . CKυ

]
ξ
]]]

,

Sx̃ ≡
[
ι G (I− βG)−1

(
αι+ X̃γ+ GX̃δ

)
X̃ GX̃

]
,

Su ≡
[
0 Ξυ

[
I G

] [
ιT2 ⊗

[[
C1υ . . . CKυ

]
ξ
]]]

,

with Ξ ≡ G (I− βG)−1
[∑K

k=1 ξk (γkI + δkG) Ck

]
and X̃ ≡

[
x̃1 . . . x̃K

]
is aN×K
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matrix that gathers the independent components of X; whereas:

Λ ≡



0 0 . . . 0
Tr (C1) 0 . . . 0

0 Tr (C2) . . . 0
...

... . . . ...
0 0 . . . Tr (CK)

Tr (GC1) 0 . . . 0
0 Tr (GC2) . . . 0
...

... . . . ...
0 0 . . . Tr (GCK)
...

... . . . ...
Tr
(
GQC1

)
0 . . . 0

0 Tr
(
GQC2

)
. . . 0

...
... . . . ...

0 0 . . . Tr
(
GQ−1CK

)



,

is a 1+QK×K matrix with full column rank if Tr (Ck), Tr (CkG), . . . , Tr
(
CkG

Q−1)
are not simultaneously all zero for k = 1, . . . , K, i.e. condition (ii) of the Theorem.

Through additional manipulation, (A.4) can be expressed as:

E
[
g1

(
θ̃
)]

= Π

(
θ1 − θ̃1

ξ− ξ̃

)
+ϕ, (A.5)

where:
Π ≡ 1

σ̃

[
E
[
(Kx̃ + Ku)T ·Ψ−1AM

(
θ̃2

)
· (Sx̃ + Su)

]
σΛ
]
,

is a 1+QK×2+3K matrix that has full column rank as per the Theorem’s conditions
including (i), i.e. mutual linear independence of I, G, G2 and G3, and (ii); whereas:

ϕ ≡ 1

σ̃
Λξ̃ (σ− σ̃) +

σ

σ̃
E
[
(Kx̃ + Ku)T

(
ΦAM

(
θ2, θ̃2

)
− I
)
υ
]
,

is a vector of length 1 +QK whose first entry is given by ϕ1 = 0, and:

ϕ1+(q−1)K+k = ϕ̃qk

(
σ, σ̃,θ2, θ̃2

)
≡ ξk
σ̃

{
ξ̃k

ξk
Tr
(
CkG

q−1) (σ− σ̃) +

+σ2

[
M∑
m=1

Tr
((

Gq−1Ck

)T
Υψ
m

)(
ψm − ψ̃m

)
+

A∑
a=1

Tr
((

Gq−1Ck

)T
Υφ
a

)(
φa − φ̃a

)
+

+
M∑
m=1

A∑
a=1

Tr
((

Gq−1Ck

)T
Υψ,φ
am

)(
ψm − ψ̃m

)(
φa − φ̃a

)]}
, (A.6)
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provides the expression for all other QK entries, for q = 1, . . . , Q and k = 1, . . . , K.
Observe that while the value of ϕ depends on σ,σ̃, θ2, and θ̃2 (though for simplicity
we largely omit this dependence from the notation used above), if σ = σ̃ and θ2 = θ̃2

it follows that ϕ = 0.
Observe that since Π has full column rank by construction, the solution in terms

of the vectors (θ1 − θ̃1) and (ξ− ξ̃) that would set (A.5) at zero as is predicated by
our model – if one such solution exists – must satisfy:(

θ1 − θ̃1

ξ− ξ̃

)
= −Π+ϕ (A.7)

where Π+ is the Moore-Penrose pseudoinverse of Π. In what follows, we analyze the
second block of moments and show that for the value of (θ1 − θ̃1) that is consistent
with (A.7), the second block is set at zero in expectation if and only if both σ = σ̃ and
θ2 = θ̃2, that is the parameters that characterize the variance-covariance structure of
the model’s error term ε, are identified. Because this implies ϕ = 0, it follows that
the only general solution of the entire system of moments implies θ1 = θ̃1 and ξ = ξ̃,
and such a solution always exists, i.e. the model’s structure is globally identified.

To proceed with our argument, it is convenient to express the value of (θ1 − θ̃1)
at the solution postulated by (A.7) as a linear function of (σ− σ̃) and (θ2 − θ̃2):

(
θ1 − θ̃1

)
= τσ0 (σ− σ̃) +

M∑
m=1

τψm

(
ψm − ψ̃m

)
+

A∑
a=1

τφa

(
φa − φ̃a

)
+

+
M∑
m=1

A∑
a=1

τψ,φma

(
ψm − ψ̃m

)(
φa − φ̃a

)
, (A.8)

where the vectors expressed as τ0, τψm, τφa and τψ,φma obtain from the development of
the algebraic operations over the first 2 (1 +K) rows on the right-hand side of (A.7).
More precisely, there are three separate collections of vectors (in addition to τσ0 ): M
vectors expressed as τψm, A vectors expressed as τφa andMA vectors expressed as τψ,φma .
All such collections feature vectors that are mutually linearly independent, because
they obtain via (A.6) from conformable linear combinations applied to the elements
of the matrices Υψ

m, Υφ
a and Υψ,φ

ma from (A.3), respectively.
We thus turn our attention to the second block of moments. Write:

E
[
g2,p

(
θ̃
)]

=
1

σ̃2
E

[ [
Ψ−1AM

(
θ̃2

)
· (Sx̃ + Su) ·

(
θ1 − θ̃1

)
+ ΦAM

(
θ2, θ̃2

)
· υ
]T
·

·Pp ·
[
Ψ−1AM

(
θ̃2

)
· (Sx̃ + Su) ·

(
θ1 − θ̃1

)
+ ΦAM

(
θ2, θ̃2

)
· υ
] ]
−

− Tr (Pp)
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i.e. the expectation of some generic p-th element of the second block, for p = 1, . . . , P ,
expressed as a function of an impostor structure θ̃. By developing and manipulating
the quadratic form inside the expectation, the above can be reformulated as:

E
[
g2,p

(
θ̃
)]

=
(
θ1 − θ̃1

)T
·$

(
θ2, θ̃2

)
+
(
θ1 − θ̃1

)T
·Σ
(
θ̃
)
·
(
θ1 − θ̃1

)T
+

+
σ2

σ̃2

[
Tr

(
Pp

(
ΦAM

(
θ2, θ̃2

)
− I
)(

ΦAM

(
θ2, θ̃2

)
− I
)T)]

+

+
2σ2

σ̃2

[
Tr
(
Pp

(
ΦAM

(
θ2, θ̃2

)
− I
))]

+
σ2 − σ̃2

σ̃2
Tr (Pp) , (A.9)

where the following is a square matrix of size 2 (1 +K):

Σ
(
θ̃
)
≡ 1

σ̃2
E
[
ST
uΨ−1AM

(
θ̃2

)T
PpΨ

−1
AM

(
θ̃2

)
Su + ST

x̃Ψ−1AM

(
θ̃2

)T
PpΨ

−1
AM

(
θ̃2

)
Sx̃

]
,

which is henceforth written as Σ for simplicity, whereas:

$
(
θ2, θ̃2

)
≡ 2

σ̃2
E
[
ST
uΨ−1AM

(
θ̃2

)T
PpΦAM

(
θ2, θ̃2

)
υ

]
,

is a vector of length 2 (1 +K) that, per (A.3), can be developed as:

$
(
θ2, θ̃2

)
= ω0 +

M∑
m=1

ωψ
m

(
ψm − ψ̃m

)
+

A∑
a=1

ωφ
a

(
φa − φ̃a

)
+

+
M∑
m=1

A∑
a=1

ωψ,φ
ma

(
ψm − ψ̃m

)(
φa − φ̃a

)
, (A.10)

where the 1 +M + A+MA vectors expressed above as ω0, ωψ
m, ωφ

a and ωψ,φ
ma are

such that, for all m = 1, . . . ,M and a = 1, . . . , A: 1. their first elements are all zeroes:
ω0,1 = ωψm,1 = ωφa,1 = ωψ,φma,1 = 0; 2. their second elements are expressed as:

ω0,2 =
2σ2

σ̃2
Tr

(
ΞTΨ−1AM

(
θ̃2

)T
Pp

)
ωψm,2 =

2σ2

σ̃2
Tr

(
ΞTΨ−1AM

(
θ̃2

)T
PpΥ

ψ
m

)
ωφa,2 =

2σ2

σ̃2
Tr

(
ΞTΨ−1AM

(
θ̃2

)T
PpΥ

φ
a

)
ωψ,φma,2 =

2σ2

σ̃2
Tr

(
ΞTΨ−1AM

(
θ̃2

)T
PpΥ

ψ,φ
ma

)
;
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and 3. all other elements are expressed as follows, for q = 1, 2 and k = 1, . . . , K:

ω0,2+(q−1)K+k =
2σ2ξk
σ̃2

Tr

((
Gq−1Ck

)T
Ψ−1AM

(
θ̃2

)T
Pp

)
ωψm,2+(q−1)K+k =

2σ2ξk
σ̃2

Tr

((
Gq−1Ck

)T
Ψ−1AM

(
θ̃2

)T
PpΥ

ψ
m

)
ωφa,2+(q−1)K+k =

2σ2ξk
σ̃2

Tr

((
Gq−1Ck

)T
Ψ−1AM

(
θ̃2

)T
PpΥ

φ
a

)
ωψ,φma,2+(q−1)K+k =

2σ2ξk
σ̃2

Tr

((
Gq−1Ck

)T
Ψ−1AM

(
θ̃2

)T
PpΥ

ψ,φ
ma

)
.

The vectors ω0, ωψ
m, ωφ

a and ωψ,φ
ma too inherit the mutual independence properties

of the matrices Υ0, Υψ
m, Υφ

a and Υψ,φ
ma , as revealed by an inspection of their elements’

expressions that are developed above.
Plugging (A.3), (A.8) and (A.10) into (A.9) yields the following polynomial:

E
[
g2,p

(
θ2, θ̃2

)]
=
(
σ2 − σ̃2

) Tr (Pp)

σ̃2
+ (σ− σ̃)ωT

0 τ
σ
0 + (σ− σ̃)2 (τσ0 )

T Στσ0

+
M∑
m=1

(
ψ̃m −ψm

)
ςψm +

M∑
m=1

(
ψ̃m −ψm

)
(σ− σ̃) ςψσm

+

A∑
a=1

(
φ̃a − φa

)
ςφa +

A∑
a=1

(
φ̃a − φa

)
(σ− σ̃) ςφσa

+

M∑
m=1

A∑
a=1

(
ψ̃m −ψm

)(
φ̃a − φa

)
ςψφma +

M∑
m=1

A∑
a=1

(
ψ̃m −ψm

)(
φ̃a − φa

)
(σ− σ̃) ςψφσma

+

M∑
m1=1

M∑
m2=1

(
ψ̃m1 −ψm1

)(
ψ̃m2 −ψm2

)
ςψ

2

m1m2
+

A∑
a1=1

A∑
a2=1

(
φ̃a1 − φa1

)(
φ̃a2 − φa2

)
ςφ

2

a1a2

+

M∑
m1=1

M∑
m2=1

A∑
a=1

(
ψ̃m1 −ψm1

)(
ψ̃m2 −ψm2

)(
φ̃a − φa

)
ςψ

2φ
m1m2a

+

M∑
m=1

A∑
a1=1

A∑
a2=1

(
ψ̃m −ψm

)(
φ̃a1 − φa1

)(
φ̃a2 − φa2

)
ςψφ

2

ma1a2

+

M∑
m1=1

M∑
m2=1

A∑
a1=1

A∑
a2=1

(
ψ̃m1 −ψm1

)(
ψ̃m2 −ψm2

)(
φ̃a1 − φa1

)(
φ̃a2 − φa2

)
ςψ

2φ2

m1m2a1a2 .

The coefficients denoted above as ς (along with indices and suffixes) are as follows:

ςψm =
2σ2

σ̃2
Tr
(
PpΥ

ψ
m

)
+ωT

0 τ
ψ
m

ςφa =
2σ2

σ̃2
Tr
(
PpΥ

φ
a

)
+ωT

0 τ
φ
a
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ςψσm =
(
ωψ
m

)T
τσ0 + 2

(
τψm

)T
Στσ0

ςφσa =
(
ωφ
a

)T
τσ0 + 2

(
τφa

)T
Στσ0

ςψφma =
σ2

σ̃2

[
Tr
(
PpΥ

ψ
mΥφ

a

)
+Tr

(
PpΥ

φ
aΥψ

m

)]
+

2σ2

σ̃2
Tr
(
PpΥ

ψ,φ
ma

)
+

+ωT
0 τ

ψ,φ
ma +

(
ωψ
m

)T
τφa +

(
ωφ
a

)T
τψm + 2

(
τψm

)T
Στφa

ςψφσma =
(
ωψ,φ
ma

)T
τσ0 + 2

(
τψ,φma

)T
Στσ0

ςψ
2

m1m2
=
σ2

σ̃2
Tr
(
PpΥ

ψ
m1

Υψ
m2

)
+
(
ωψ
m1

)T
τψm2

+
(
τψm1

)T
Στψm2

ςφ
2

a1a2 =
σ2

σ̃2
Tr
(
PpΥ

φ
a1Υ

φ
a2

)
+
(
ωψ
a1

)T
τφa2 +

(
τφa1

)T
Στφa2

ςψ
2φ

m1m2a =
σ2

σ̃2

[
Tr
(
PpΥ

ψ,φ
m1aΥ

ψ
m2

)
+Tr

(
PpΥ

ψ
m1

Υψ,φ
m2a

)]
+

+
(
ωψ
m1

)T
τψ,φm2a +

(
ωψ,φ
m1a

)T
τψm2

+ 2
(
τψ,φm1a

)T
Στψm2

ςψφ
2

ma1a2 =
σ2

σ̃2

[
Tr
(
PpΥ

ψ,φ
ma1Υ

φ
a2

)
+Tr

(
PpΥ

φ
a1Υ

ψ,φ
ma2

)]
+

+
(
ωφ
a1

)T
τψ,φma2 +

(
ωψ,φ
ma1

)T
τφa2 + 2

(
τψ,φma1

)T
Στφa2

ςψ
2φ2

m1m2a1a2 =
σ2

σ̃2
Tr

(
PpΥ

ψ,φ
m1a1

(
Υψ,φ
m2a2

)T)
+
(
ωψ,φ
m1a1

)T
τψ,φm2a2 +

(
τψ,φm1a1

)T
Στψ,φm2a2 .

By condition (iii) of the Theorem (linear independence of the Pp matrices) and per
the considerations made thus far, the polynomial coefficients are linearly independent
across the expectations of all P second order moments. Hence, the only solution that
sets all these expectations at zero has σ̃ = σ and θ̃2 = θ2. This completes the proof.

Proof of Theorem 2

In this proof, we denote by x∗k,N the k-th column of XN for k = 1, . . . , K; its expected
value E [xk,N ] = E

[
x̃∗k,N

]
, where x̃k,N is defined in Assumption 6, corresponds with

the k-th column of E [XN ]. We also write the unconditional expected value of yN as:

E [yN ] = (IN − β0GN)−1 (α0ιN + E [XN ]γ0 + GNE [XN ]δ0) .

We also introduce some more auxiliary notation. Let G̃N (β) ≡ GN (IN − βGN)−1,
and define the following vectors:

dN (θ) ≡ (α0 − α) ιN + (β0 − β) GNE [yN ] + E [XN ] (γ0 − γ) + GNE [XN ] (δ0 − δ) ,

eN (θ) ≡ εN + (XN − E [XN ]) (γ0 − γ) + GN (XN − E [XN ]) (δ0 − δ)

+ (β0 − β) G̃N (β0) [εN + (XN − E [XN ])γ0 + GN (XN − E [XN ])δ0] .
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Observe that εN (θ) = dN (θ) + eN (θ). Furthermore, the following K matrices will
be helpful throughout:

Γk,0 (θ) ≡
[
(γk,0 − γk) IN + (δk,0 − δk) GN + (β0 − β) G̃N (β0) (γk,0IN + δk,0GN)

]
,

where k = 1, . . . , K. Finally, observe that the GMM weighting matrix WN can be
written as:

WN = AT
NAN ,

where AN is a square matrix of dimension 1 +QK +P and such that AN
p→ A0 and

rank (AN) ≥ dim |θ|, where AT
0 A0 = W0. This implies that the vector ANmN (θ)

can be decomposed as:

1

N
ANmN (θ) =

1

N
a1,N ι

T
N +

1

N

[
Q∑
q=1

K∑
k=1

a1+(q−1)K+k,Nqqk,N

+
P∑
p=1

a1+QK+p,Nε
T
N (θ) Pp,N

]
εN (θ) ,

(A.11)

where the 1 +QK + P elements written as a.,N are appropriate combinations of the
elements of AN . Our main proof of consistency is based on this decomposition; later
we refer to the “first” and the “second” element of (A.11) as the two summations laid
out within brackets respectively in the first and second line of the above display.

Before we get to the proof proper, one final preparatory step is useful. We later
further decompose the elements of (A.11) into smaller bits, through some auxiliary
vectors and matrices; it is helpful to introduce these arrays immediately. They are:
(i) some K (1 +K) matrices, which are written as R∗k,N (θ) and R∗kk′,N (θ), and are
indexed by k, k′ = 1, . . . , K:

R∗k,N (θ) ≡
Q∑
q=1

Gq−1
N a1+qk,N

[
IN + (β0 − β) G̃N (β0)

]

R∗kk′,N (θ) ≡
Q∑
q=1

Gq−1
N a1+qk,NΓk,0 (θ) ,

(ii) a set of K + 1 vectors written as l∗∗0,N (θ) and as l∗∗k,N (θ) for k = 1, . . . , K;

l∗∗0,N (θ) ≡ dT
N (θ)

P∑
p=1

a1+QK+p,NPp,N

[
IN + (β0 − β) G̃N (β0)

]
l∗∗k,N (θ) ≡ dT

N (θ)
P∑
p=1

a1+QK+p,NPp,NΓk,0 (θ) ,
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(iii) another set of 1+K+K2 matrices, written as R∗∗0,N (θ), R∗∗k,N (θ) and R∗∗kk′,N (θ),
and indexed by k, k′ = 1, . . . , K:

R∗∗0,N (θ) ≡
(
IN + (β0 − β) G̃T

N (β0)
) P∑
p=1

a1+QK+p,NPp,N

(
IN + (β0 − β) G̃N (β0)

)
R∗∗k,N (θ) ≡

(
IN + (β0 − β) G̃T

N (β0)
) P∑
p=1

a1+QK+p,N

(
Pp,N + PT

p,N

)
Γk,0 (θ)

R∗∗kk′,N (θ) ≡ ΓT
k′,0 (θ)

[
P∑
p=1

a1+QK+p,NPp,N

]
Γk,0 (θ) .

We now proceed to our main argument. In order to establish consistency of θ̂GMM ,
it is necessary to show uniform convergence in probability for all the elements that
comprise the vector ANmN (θ). Consider the first element in brackets in (A.11):

Q∑
q=1

K∑
k=1

a1+(q−1)K+k,Nqqk,NεN (θ) =

Q∑
q=1

K∑
k=1

a1+(q−1)K+k,N

(
Gq−1
N x∗k,N

)T
dN (θ)︸ ︷︷ ︸

≡ l∗N (θ)

+

Q∑
q=1

K∑
k=1

a1+(q−1)K+q,N

(
Gq−1
N x∗k,N

)T
eN (θ)︸ ︷︷ ︸

≡ r∗N (θ)

,

where l∗N (θ) is given by:

1

N
l∗N (θ) =

1

N

Q∑
q=1

K∑
k=1

a1+(q−1)K+k,N

(
Gq−1
N E

[
x∗k,N

])T
dT
N (θ) + oP (1) ,

while r∗N (θ) can be expressed as a function of the R∗k,N (θ) and R∗kk′,N (θ) matrices
defined above (note: the second line continues on the next page):

1

N
r∗N (θ) =

1

N

K∑
k=1

(
x∗k,N − E

[
x∗k,N

])T
R∗k,N (θ)

(
x∗k,N − E

[
x∗k,N

])
+

1

N

K∑
k=1

K∑
k′=1

(
x∗k′,N − E

[
x∗k′,N

])T
R∗k,k′,N (θ) εN

= σ2
0

1

N

K∑
k=1

ξ0,kTr
(
CT
k,NR∗k,N (θ) (IN +ψ0EN)

)
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+
1

N

K∑
k=1

K∑
k′=1

ξ0,kξ0,k′Tr
(
CT
k,NR∗k,k′,N (θ) Ck,N

)
+

1

N

K∑
k=1

K∑
k′=1

Ξkk′ · Tr
(
R∗k,k′,N (θ)

)
+ oP (1) .

Similarly, the second term in brackets in (A.11) can be decomposed as:

P∑
p=1

a1+QK+p,Nε
T
N (θ) Pp,NεN (θ) =

P∑
p=1

a1+QK+p,NdT
N (θ) Pp,NdN (θ)

+ 2
P∑
p=1

a1+QK+p,NdT
N (θ) Pp,NeN (θ)︸ ︷︷ ︸

≡ l∗∗N (θ)

+
P∑
p=1

a1+QK+p,NeT
N (θ) Pp,NeN (θ)︸ ︷︷ ︸

≡ r∗∗N (θ)

,

where l∗∗N (θ) is written in terms of l∗∗0,N (θ) and l∗∗k,N (θ):

1

N
l∗∗N (θ) =

1

N
l0,N (θ) εN +

1

N

K∑
k=1

lk,N (θ)
(
x∗k,N − E

[
x∗k,N

])
= oP (1) ,

while the term r∗∗N (θ) can be related to R∗∗0,N (θ), R∗∗k,N (θ) and R∗∗kk′,N (θ):

1

N
r∗∗N (θ) =

1

N
εTNR∗∗0,N (θ) εN +

1

N

K∑
k=1

εTNR∗∗k,N (θ)
(
x∗k,N − E

[
x∗k,N

])
+

1

N

K∑
k′=1

(
x∗k′,N − E

[
x∗k′,N

])T
R∗∗k,k′,N (θ)

(
x∗k,N − E

[
x∗k,N

])
= σ2

0

1

N
Tr
(

(IN +ψ0EN)T R∗∗0,N (θ) (IN +ψ0EN)
)

+
1

N

K∑
k=1

σ2
0ξ0,kTr

(
(IN +ψ0EN)T R∗∗k,N (θ) Ck,N

)
+

1

N

K∑
k=1

K∑
k′=1

σ2
0ξ0,kξ0,k′Tr

(
CT
k,NR∗∗k,k′,N (θ) Ck,N

)
+

1

N

K∑
k=1

K∑
k′=1

Ξkk′ · Tr
(
R∗∗k,k′,N (θ)

)
+ oP (1) .

Note that N−1ιT
{
x∗k,N − E

[
x∗k,N

]}
= oP (1) for k = 1, . . . , K uniformly in θ ∈ Θ

by Lemmas A.3 and A.4 in Lee (2007a). Since Θ is bounded and all the terms l∗N (θ),
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r∗N (θ), l∗∗N (θ) and r∗∗N (θ) can be expressed as appropriate functions of the relevant
parameters, uniform convergence follows. Since mN (θ) is also quadratic in θ and Θ
is bounded, then E [mN (θ)] is uniformly equicontinuous in Θ. This result, along with
the identification conditions, implies that the identification uniqueness condition for
E
[
mT

N (θ) AT
NANmN (θ)

]
is satisfied. Thus, the consistency of the GMM estimator

follows from standard arguments (White, 1996).
It remains to show that θ̂GMM is also asymptotically normal. The usual applica-

tion of the Mean Value Theorem to the First Order Conditions of the GMM problem
gives:

√
N
(
θ̂GMM − θ0

)
= −

[
JT
N

(
θ̂GMM

)
WNJN

(
θ
)]−1

JT
N

(
θ̂GMM

)
WN

√
NmN (θ0) .

where JN (θ) = ∂
∂θ

mN (θ). By Theorem 1 in Kelejian and Prucha (2001):

√
NANmN (θ0)

d→ N
(
0,A0Ω0A

T
0

)
. (A.12)

Hence, the main result would follow if JN

(
θ̂GMM

)
= J0 + oP (1). Note that:

JN (θ) = − 1

N



Q1,N
...

QQ,N

2εTN (θ) P1,N
...

2εTN (θ) PP,N


[
ιN GNyN XN GNXN 0N 0N 0N

]

+
1

N

∂λN (θ)

∂θT
,

where 0N is shorthand for an N -dimensional vector of zeros. Leaving ∂
∂θT
λN (θ) aside

for the moment, we focus on a submatrix of the first term on the right-hand side,
that is the last P rows of the second column. This vector comprises the derivatives of
the P second-order moments with respect to β; the analysis of the rest of the matrix
is just a simpler case. By Lemmas A.3 and A.4 in Lee (2007a), one can write every
p-th element of said subvector, for p = 1, 2, . . . , P , as:

1

N
εTN (θ) Pp,NG̃N (β0) (α0ι+ XNγ0 + GNXNδ0 + εN) = bp,N + vp,N + tp,N + fp,N ,

where yN (θ0) ≡ (IN − β0GN)−1 (α0ιN + XNγ0 + GNXNδ0 + εN). The terms on
the right-hand side are instead given by:

bp,N =
1

N
dT
N (θ) Pp,NGNyN (θ0) =

1

N
dT
N (θ) Pp,NGNE [yN ] + oP (1) ,
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and:

vp,N =
1

N
εTNPp,NGNyN (θ0) = σ2

0

1

N
Tr
[
Pp,NG̃N (β0)

]
+

K∑
k=1

1

N
σ2
0Tr
[
(IN +ψ0EN)T Pp,NG̃N (β0) (γk,0Ck,N + δk,0GNCk,N) ξk,0

]
+oP (1) ,

and:

tp,N =
1

N
(β0 − β) εTNG̃N (β0)

T Pp,NGNyN (θ0)

= σ2
0 (β0 − β)

1

N

{
Tr
(
G̃T
N (β0) Pp,NG̃N (β0)

)
+

K∑
k=1

Tr
[

(IN +ψ0EN)T

· G̃T
N (β0) Pp,NG̃N (β0) (γk,0Ck,N + δk,0GNCk,N) ξk,0

]}
+ oP (1) ,

and:

fp,N =
1

N

K∑
k=1

(
x∗k′,N − E

[
x∗k′,N

])T
ΓT
k,0 (θ) Pp,NGNyN (θ0)

=
1

N

K∑
k=1

ξk,0C
T
k,NΓT

k,0 (θ) Pp,NG̃N (β0)

(
INσ

2
0 +

K∑
k′=1

(γk′,0IN + δk′,0GN) Ck,N

)

+
1

N

K∑
k=1

K∑
k′=1

Ξkk′ ·Pp,NG̃N (β0) (γk′,0IN + δk′,0GN) + oP (1) .

All the probability limits above imply uniform convergence for any θ ∈ Θ. Evaluating
these terms at θ = θ0, implies dp,N = vp,N = tp,N = fp,N = oP (1) as dN (θ0) = 0.
Collecting these results together gives:

1

N
εT (θ) Pp,NGNyN (θ0) = σ20Tr

[
Pp,NG̃N (β0)

]
+ σ2

0

K∑
k=1

ξk,0Tr
[
(IN +ψ0EN)T Pp,NG̃N (β0) GN

]
+ oP (1) .

Furthermore, some tedious analysis reveals that 1
N

∂
∂θT
λN (θ) = 1

N
∂
∂θT
λ (θ0) + oP (1);

hence, the P × 1 submatrix of JN (θ) under examination has the desired properties.
Finally, consistency of θ̂GMM also straightforwardly implies that JN

(
θ
) p→ J0. These

considerations, together with equation A.12, yield the desired result through the usual
application of Slutsky’s theorem.
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Addendum A: bias of conventional methods: analysis
This section elaborates the analysis of the bias entailed by conventional methods for
the estimation of social effects – specifically Bramoullé et al. (2009, henceforth BDF)
– as anticipated in footnote 15 of the main text. First, recall that under an exogeneity
assumption about the matrix of covariates X, BDF proposed a consistent estimator
which employs the spatial lags of the covariates themselves as instruments. To better
understand the source of endogeneity in the model presented in this paper, it is useful
to examine the source of endogeneity for OLS under the exogeneity assumption in
BDF. Recall the SAR model (11), written without N subscripts:

y = αι+ βGy + γx + ε,

and note that under homoscedasticity, OLS is based on the following moments:

E
[
ιTε
]

= 0 (A.13)

E
[
(Gy)T ε

]
= σ20Tr

(
(I− βG)−1 GT

)
(A.14)

E
[
xTε

]
= 0, (A.15)

where (A.14) is better understood by noting that:

E
[
(Gy)T ε

]
= E

[
εT (I− βG)−1 GTε

]
.

The bias arising from endogneity is proportional to the right-hand side of (A.14).
Since Gy linearly depends on ε, this moment is non-zero in expectation, and therefore
OLS is inconsistent. This is circumvented by substituting it by the moment:

E
[(

G1y
)T
ε
]

= 0

for some positive integer q. This moment equals zero in expectation and is therefore
valid so long as the adjacency matrix G satisfies a the conditions spelled out by BDF
(i.e. I, G and G2 need to be linearly independent).

The model we consider generalizes that by BDF by making x and ε correlated.
Consider for simplicity the case with only one individual covariate (K = 1) as well as
a SARMA(0,1) specification. For some positive integer q, our key moments are given
by the equations:

E
[
(Gy)T ε

]
= E

[
(γx + ε)T (I− βG)−1 Gε

]
= γξσ2Tr

(
CT (I− βG)−1 GT (I +ψE)

)
+ σ2Tr

(
(I− βG)−1 GT

)
,

(A.16)
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and:
E
[
(Gqx)T ε

]
= ξσ2Tr

(
(GqC)T (I +ψE)

)
. (A.17)

When the model features endogeneity (ξ 6= 0), both moments (A.16) and (A.17) are
non-zero in expectation. Observe that (A.16) is composed of two terms: one that
encodes the endogeneity of Gy relative to ε, and one that captures the endogeneity
between x and ε. Instead, the bias in (A.17) is entirely due to the endogeneity of x.
The bias depends crucially on the interaction between the network adjacency matrix
G and the characteristics matrix C, which determines the spatial correlation of the
different variables at hand. Note also that the spatial MA(1) term of ε, expressed by
the term ψE, amplifies the diffusion across individuals, but it does not cause a bias
to the BDF moments so long as the individual characteristics are exogenous (ξ = 0).
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Addendum B: data transformations, empirical results
Table A below reports results from estimates of a variation of model (13), adapted to
the specification (33) from our empirical application (with δ = 0), where matrix B is
constructed in such a way that, for some given choice of the characteristic matrix C,
it is BC = 0. In particular, we set B = I − CC+, where C+ is the Moore-Penrose
pseudoinverse of C. The results are characterized by large standard errors and point
estimates that are at times implausible, especially for the social effects parameter β.

Table A: Empirical estimates: data transformations

Outcome variable: y(1)i (later career GPA)

(1) (2) (3) (4) (5) (6) (7)

β 0.224 0.425* 0.765*** 1.424*** 1.339*** 0.282*** 0.254
(0.144) (0.251) (0.282) (0.305) (0.188) (0.155) (0.208)

γ 11.760*** 11.073*** 11.322*** 12.486*** 13.574*** 10.477*** 10.930***
(0.461) (0.826) (0.861) (0.736) (1.001) (0.562) (0.569)

χfe 0.196* 0.461** 0.694*** 0.304** 0.304** 0.583*** 0.258**
(0.101) (0.191) (0.182) (0.134) (0.134) (0.117) (0.122)

Outcome variable: y(2)i (economics major choice)

(8) (9) (10) (11) (12) (13) (14)

β 0.355 -0.182 0.095 8.353 0.265 -0.357 -0.138
(0.466) (0.735) (0.548) (9.461) (0.443) (0.522) (0.619)

γ 0.538*** 0.614*** 0.443*** -1.435 0.356* 0.636*** 0.630***
(0.093) (0.148) (0.116) (2.116) (0.199) (0.117) (0.147)

χfe 0.002 -0.003 0.045* 0.602*** 0.602*** 0.002 -0.007
(0.020) (0.034) (0.025) (0.105) (0.105) (0.021) (0.024)

δ = 0 YES YES YES YES YES YES YES
C Ce Ch1 Ch2 Cdh1 Cdh2 I + G I + ½G
Obs. 1,141 1,141 1,141 1,141 1,141 1,141 1,141

Notes. Each column in this table reports IV/2SLS estimates of a transformed version of model (33),
for both outcome variables as indicated in the headers of the top and bottom panels. The transfor-
mation is as follows: both sides of the regression equation (in vectoral form), are pre-multiplied by
a matrix B such that, for a given choice of matrix C as specified in each column, BC = 0, yielding
an augmented version of model (13). Specifically, B = I−CC+, where C+ is the Moore-Penrose
pseudoinverse of C. All estimates incorporate the restriction δ = 0 (no exogenous effects). Point
estimates for parameters other than β, γ and χfe are omitted. Standard errors are in parenthe-
ses. Asterisk series: *, **, and ***; denote statistical significance at the 10, 5 and 1 per cent level,
respectively. Obs.: Observations.
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