Identification of Network Effects with Spatially Endogenous Covariates: Theory, Simulations and an Empirical Application*

Santiago Pereda-Fernández ${ }^{\dagger}$ and Paolo Zacchia ${ }^{\ddagger}$

March 2023

Abstract

Researchers interested in the estimation of peer and network effects, even if these are algebraically identified, still need to address the problem of correlated effects. In this paper we characterize the identification conditions for consistently estimating all the parameters of a spatially autoregressive or linear-in-means model when the structure of social or peer effects is exogenous, but the observed and unobserved characteristics of agents are cross-correlated over some given metric space. We show that identification is possible if the network of social interactions is non-overlapping up to enough degrees of separation, and the spatial matrix that characterizes the co-dependence of individual unobservables and peers' characteristics is known up to a multiplicative constant. We propose a GMM approach for the estimation of the model's parameters, and we evaluate its performance through Monte Carlo simulations. Finally, we show that in a classical empirical application about classmates our approach might estimate statistically nonsignificant peer effects when conventional approaches register them as significant.

JEL Classification Codes: C21, C31, D85
Keywords: Peer Effects, Networks, Correlated Effects, Spatial Correlation

[^0]
1 Introduction

A sizable body of empirical economic research concerns the analysis of peer effects, network effects and more generally "social effects," i.e. mutual externalities induced by socio-economic interaction. Within this literature, peer effects in education occupy a prominent position (Sacerdote, 2001; Calvó-Armengol et al., 2009; De Giorgi et al., 2010; Carrell et al., 2013), but applications in more diverse fields are also numerous (Glaeser et al., 1996; Duflo and Saez, 2003; Mas and Moretti, 2009). ${ }^{1}$ In the face of a growing empirical evidence, econometric analysis has struggled for a while to provide a unique structural interpretation to observed group correlations in socio-economic outcomes. Over time, advances have been made: to unambiguously identify the effect of social interactions, the current econometric theory and practice emphasize the use of instrumental variables based upon the observable characteristics of indirectly connected agents in structures of social interactions with a non-trivial topology, such as networks (Bramoullé et al., 2009). However, this kind of approach is largely confined to a restricted set of settings where such characteristics, as well as the structure of socio-economic interactions itself, are both as good as exogenous. This makes these studies liable to the critique, which was put forward most notably by Angrist (2014), according to which the current results in the literature are likely to reflect spurious correlations due to unobserved "correlated effects" that are shared between peers.

By contrast, in this paper we examine a cross-sectional model of social interactions where the observed and unobserved individual characteristics are: (i) cross-correlated across individuals in some metric space, and (ii) mutually dependent on one another. Our point of departure is a "Spatially Autoregressive" model (Cliff and Ord, 1981), hereinafter SAR, whose econometrics has been analyzed extensively (Lee, 2007a,b; Lee et al., 2010; Lin and Lee, 2010; Liu and Lee, 2010; Lee and Liu, 2010). Similarly to other papers, we derive our empirical model from an explicit theoretical (strategic) framework; unlike most, ours is based on a Cobb-Douglas utility function, and it can accommodate contexts ranging from peer effects in the classroom to R\&D spillovers.

[^1]We explicitly illustrate that in such a framework, the type of endogenous dependence that we allow for not only makes standard estimates of social effects inconsistent, but can also be - under some specifications - observationally equivalent to the so-called "exogenous" or "contextual" effects of peers' characteristics that are often featured in studies about social interactions. Both observations resonate with the aforementioned critique of the whole empirical literature about social effects.

The main contribution of our paper is to show that within this framework, social effects are identified without resorting to external instruments. We analyze a scenario where the observable characteristics of socio-economic agents depend in a linear fashion on both their own unobservables and on those of other agents, which makes such characteristics both endogenous and cross-correlated. We impose no restriction upon the spatial matrices that characterize this type of endogeneity, except that they are known to the econometrician up to a multiplicative parameter that quantifies the extent of endogeneity. As we elaborate later, knowing the structure but not the intensity of this type of spatial correlation is arguably realistic in those empirical settings that motivate our work. For example, in peer networks observable characteristics, possibly all of them, are likely correlated on the basis of individual previous backgrounds, be they professional, cultural or geographical; in firm-level networks instead, the spatial correlation of key firm-level variables is likely shaped by similarities in technological and product market characteristics. Still, in our analysis we also explore the practical implications of knowing the structure in question imperfectly (misspecification).

The main identifying assumption extends those by Bramoullé et al. (2009), as it requires that the structure of social interactions is non-overlapping up to an additional degree of separation in network space relative to their original results. The intuition is that the type of endogeneity featured in our framework introduces a bias which is observationally equivalent to higher-order network effects; the bias can be explicitly controlled for by accounting for the correlation between an individual's outcome and the characteristics of higher-order indirect connections in the network. In order to do that, such correlations must be separately identified at different degrees of separation. In the more general version of our model we also introduce a number of covariance restrictions. Their key role is to identify the parameters associated with the primitive components of the error term's covariance structure (which we allow to be arbitrarily autocorrelated and moving-averaged in network space) and that affect the expression of the aforementioned bias which we control for via first-order moment conditions.

Leveraging upon the moment conditions upon which our identification results are based, we propose a GMM approach for the joint estimation of both social effects and the other parameters of our framework. We derive the asymptotic properties of our estimator and we evaluate its performance in Monte Carlo simulations. Furthermore, we showcase it empirically by applying it to the setting and data from the study by De Giorgi et al. (2010), which is about peer effects in the classroom between students of Bocconi University in Italy. Although peer groups are formed exogenously in that setting, it is arguable that the observable characteristics of students - such as their high school grades - are cross-correlated in a predictable fashion, e.g. as a function of two students' geographical provenance. Indeed, the estimates of peer effects based on an application of our method which accounts for geography-driven cross-correlation are typically smaller in magnitude compared to customary approaches, and often not statistically significant. This pattern holds under specific assumptions about the dependence structure, but is robust to perturbations of it. This echoes an observation we draw from Monte Carlo simulations: our approach can still outcompete the alternatives under misspecification of the cross-correlation between the error term and the observable characteristics. Overall, we interpret these results as a warning against the incautious interpretation of observed cross-correlations in individual outcomes as the result of some structural, behavioral mechanisms such as peer effects.

To better frame our contribution, it is worth to summarize the intellectual history of the workhorse framework in many studies on social effects: the "linear-in-means" model (a special case of an augmented SAR model). In a seminal paper, Manski (1993) highlighted the "reflection problem:" social effects occurring in segregated groups are hard to identify, because group characteristics and group outcomes are simultaneous. Since then, econometricians have striven to characterize conditions under which social effects can be disentangled from confounding factors. The aforementioned, influential contribution by Bramoullé et al. (2009) illustrates how to identify social effects when the latter are shaped via networked structures of interaction where connections are not necessarily transitive; this is especially appealing as networks typically provide more realistic descriptions of real-world social relationships. Blume et al. (2015) incorporate their identification results - as well as one based upon covariance restrictions which builds on Graham (2008) - within a more extended framework. Thanks to these and other efforts, it is now well understood that complex patterns of individual dependence make the identification of social effects, if anything, easier.

Yet most of these analyses either maintain the assumption that the model's error term is conditionally independent of the observable characteristics and the structure of interactions, or they assume structures of dependence which are not as general and potentially pervasive as ours, and which hence allow for relatively simple solutions. ${ }^{2}$ Obviously, the spatial econometrics literature has examined correlated unobservables at length (Kelejian and Prucha, 1998, 2007, 2010; Kapoor et al., 2007; Drukker et al., 2013); however, individual covariates are typically assumed exogenous in such studies. In a recent survey of the literature about peer effects in networks, Bramoullé et al. (2020) discuss several randomization-based attempts aimed at addressing endogeneity in the composition of peer groups: a problem which is distinct, albeit related, to that of correlated effects. The survey cites an earlier, incomplete version of our paper as the only recent contribution that attempts a structural approach to address the issue of generalized correlated effects, a method potentially amenable to observational studies. Our idea of exploiting the very spatial structure of endogenous cross-correlation for the sake of identification builds upon some previous work by Zacchia (2020). ${ }^{3}$

As mentioned, the literature has focused at length on a key issue: the possibility that the actual networked structure of interactions is itself endogenous. In an influential contribution, Goldsmith-Pinkham and Imbens (2013) adopt a Bayesian approach in order to estimate an extension of the linear-in-means model where the probability that two peers are linked depends on the degree of similarity between their observable and unobservable characteristics ("homophily"). Following a suggestion originally given by Blume et al. (2015), some scholars (Arduini et al., 2015; Johnsson and Moon, 2021) later developed a control function approach to account for endogeneity of the network. These methods embed, within a SAR-like framework, a network formation model based on Graham (2017). ${ }^{4}$ In other, more empirical contributions, the network or part of it is random (Sacerdote, 2001; De Giorgi et al., 2010; Carrell et al., 2013). We argue that randomizing the peer groups is not sufficient to solve the problem of

[^2]correlated effects if spatial correlation in the unobservables is pervasive. We maintain that the network is exogenous in most of our discussion: thus, we can isolate our key mechanism of interest. We argue, however, that the approach we propose would also work under some particular, realistic specifications of endogenous network formation.

It is useful to relate our article to other papers from the literature about peer and network effects. In addition to the cited contribution by Graham (2008), other papers make use of conditional covariance restrictions to achieve the identification of social effects (Glaeser et al., 1996; Moffitt, 2001; Davezies et al., 2009; Pereda-Fernández, 2017; Rose, 2017a). Our method also exploits some covariance restrictions, but unlike these papers, their role in identification is to disentangle the autonomous covariance structure of the error term from that of individual covariates, if the two are correlated. Other contributions develop methods for estimating unknown structures of interaction (Rose, 2017b; de Paula et al., 2019) using penalized estimators. While we make no use of such techniques, we argue that they may be adapted for the sake of recovering the structure of spatial correlation that induces endogeneity. We revisit this observation in the conclusion of the paper while suggesting future lines of work.

The remainder of this paper is organized as follows. Section 2 presents our model and the endogeneity specification that we analyze. Section 3 details on the conditions for the identification of social effects. Section 4 introduces our GMM estimator and its asymptotic properties. Section 5 assesses its performance in Monte Carlo simulations. Section 6 discusses our empirical application of the proposed estimator. Lastly, Section 7 concludes the paper. An Appendix provides key mathematical proofs.

2 General Framework

The first part of this section introduces a game-theoretical framework to support our empirical model, and we emphasize its implications for the statistical identification of social effects. The last part of this section characterizes the endogeneity specification that we focus on, and we motivate it with examples inspired by applied research.

2.1 A game of social interactions

We consider an abstract setting of social and economic interactions between heterogeneous agents (players) in a network. In order to allow for interdependence between
the characteristics of agents and the structure of their connections, we allow nature to randomly draw the weighted network $(\mathcal{I}, \mathcal{G})$ that characterizes the social interactions. Here, \mathcal{I} is the set that comprises the N players, who are indexed as $i=1, \ldots, N$. The N^{2}-dimensional set \mathcal{G}, instead, represents the interaction structure: thus, $g_{i j} \in \mathbb{R}$ denotes the relative strength of the influence exerted by player j on player i (and vice versa). We impose two standard normalizations: $g_{i j} \in[0,1]$ and $g_{i i}=0$ for all players $i=1, \ldots, N$. Otherwise, we force no particular structure of the network: we generally allow for asymmetric, directed networks such that for any pair $(i, j) \in \mathcal{I}^{2}$, the weight $g_{i j}$ implies no restriction upon the weight $g_{j i}$, and vice versa.

Every player in \mathcal{I} is typified by two variables $\left(x_{i}, \epsilon_{i}\right)$. We denominate $x_{i} \in \mathcal{X}$ the observable characteristic of player i, and $\epsilon_{i} \in \mathcal{E}$ his or her unobservable characteristic, a terminology that conveys what information regarding either variable is available to econometricians. Both x_{i} and ϵ_{i} may be interpreted as the composition of multiple socio-economic factors. Thus, one can easily generalize this framework, as we do later while introducing a more general model with multiple observable characteristics. For simplicity, we set $\mathcal{X}=\mathcal{E}=\mathbb{R}$, although restricted supports could be accommodated easily. We assume that: (i) the random vector of individual observable characteristics $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)$, (ii) the random vector of individual unobservables $\boldsymbol{\epsilon}=\left(\epsilon_{1}, \ldots, \epsilon_{N}\right)$, and (iii) the network \mathcal{G}, are all randomly drawn from a joint probability distribution $\mathcal{F}(\mathbf{x}, \boldsymbol{\epsilon}, \mathcal{G})$, which is known by all agents. This paper deals with particular restrictions on $\mathcal{F}(\cdot)$ such that social effects are identified, despite ($\mathbf{x}, \boldsymbol{\epsilon}$) being mutually dependent (and possibly dependent on \mathcal{G} as well). For the sake of exposition, for the moment we place no a priori restriction on $\mathcal{F}(\cdot)$; in the latter part of this section, we introduce and motivate our endogeneity specification of interest.

Players maximize the following "twice exponential" utility function:

$$
\begin{equation*}
U_{i}\left(e_{1}, \ldots, e_{N} ; x_{i}, \epsilon_{i}\right)=\exp \left[y_{i}\left(e_{1}, \ldots, e_{N} ; x_{i}, \epsilon_{i}\right)\right]-\exp \left(e_{i}\right), \tag{1}
\end{equation*}
$$

where y_{i} is the individual-level outcome (denoting, say, grades, or production output). The latter is determined through a linear relationship which implies a Cobb-Douglas positive contribution to utility, and that allows for diverse settings such as peer effects in education and $R \& D$ spillovers across firms:

$$
\begin{equation*}
y_{i}\left(e_{1}, \ldots, e_{N} ; x_{i}, \epsilon_{i}\right)=\alpha_{0}+\gamma_{0} x_{i}+\mu e_{i}+v \sum_{i=1}^{N} g_{i j} e_{j}+\epsilon_{i} . \tag{2}
\end{equation*}
$$

The outcomes of individuals depend upon their characteristics $\left(x_{i}, \epsilon_{i}\right)$ as well as on a costly strategic variable $e_{i} \in \mathbb{R}$ that we call effort: this may represent, for instance, time dedicated to homework (if the setting of interest is peer effects in education) or R\&D investment (for the R\&D spillovers setting). Because of social interactions and externalities, y_{i} also depends on the effort of all the other players an agent is connected to (possibly negatively). ${ }^{5}$ The private and social effects of effort are parametrized as μ and v, respectively. Note that in this model, all variables (including the weighted sum of peer effort) are complements with one another, unlike in quadratic utility models typical of the peer effects literature (Calvó-Armengol et al., 2009; Blume et al., 2015).

Define the combined parameter $\beta \equiv \nu /(1-\mu)$. We analyze the model under the following assumptions, the first two of which we maintain throughout the paper.

Assumption 1. Concavity: $\mu \in[0,1)$.
Assumption 2. Non-explosiveness: $|\beta| \cdot \max _{i \in \mathcal{I}} \sum_{j=1}^{N} g_{i j} \in[0,1)$.
Assumption 3. Row Normalization: $\bar{g}_{i} \equiv \sum_{j=1}^{N} g_{i j}=1$ for all $i=1, \ldots, N$.
Assumption 1 makes the positive part of utility non-convex in the strategic variable e_{i}, and thus the model salient. Assumption 2 limits the impact of social effects on the outcome: first, it ensures uniqueness of the equilibrium while ruling out unrealistically "explosive" solutions with very large values of y_{i}; moreover, from a statistical point of view, it bounds the variance-covariance of $\mathbf{y}=\left(y_{1}, \ldots, y_{N}\right)$, which is an increasing function of network connections. ${ }^{6}$ Assumption 3 is typical of the peer effects literature (Manski, 1993; Bramoullé et al., 2009) and provides an interpretation of social effects as the individual response to the weighted average behavior or characteristics of peers. This contrasts with models where social effects are a function of the total intensity of connections. Throughout most of this paper we maintain Assumption 3 and focus on the conditions for identifying the combined parameter β. Later we relax this hypothesis and we discuss a version of our framework where μ and v are separately identified through variation in individual in-degree \bar{g}_{i}. Incidentally, observe that Assumption 3 implies that no agent is allowed to be "isolated" (disconnected from the network) and that under row normalization, Assumption 2 reduces to $|\beta| \in[0,1)$.

[^3]We analyze a game of complete information characterized by the following timing.

1. Nature draws $(\mathbf{x}, \boldsymbol{\epsilon}, \mathcal{G})$ from $\mathcal{F}(\cdot)$. Every player observes the result of this draw.
2. Players simultaneously make their effort choices, and utilities are realized.

By letting the network be generated randomly by nature we abstract from the specifics of the network formation process, as the following result does not depend on it. ${ }^{7}$

Proposition 1. Equilibrium. For all realizations of $(\mathbf{x}, \boldsymbol{\epsilon}, \mathcal{G})$, under Assumptions 1 and 2 there exists a unique equilibrium of the game, which gives rise to an equation for the outcome y_{i} that can be expressed for each player $i=1, \ldots, N$ as follows:

$$
\begin{equation*}
y_{i}=\alpha+\beta \sum_{j=1}^{N} g_{i j} y_{j}+\gamma x_{i}+\varepsilon_{i} \tag{3}
\end{equation*}
$$

where $\alpha \equiv\left[\alpha_{0}+(\mu+v) \log \mu\right] /(1-\mu), \gamma \equiv \gamma_{0} /(1-\mu)$ and $\varepsilon_{i} \equiv \epsilon_{i} /(1-\mu)$.
Proof. The First Order Condition for utility maximization can be written, for every player $j=1, \ldots, N$, as:

$$
\begin{equation*}
e_{j}=y_{j}+\log \mu \tag{4}
\end{equation*}
$$

Substituting this expression into (2) results in (3). Moreover, by substituting (2) into (4) and solving for e_{j} it is easily seen that - under the non-explosiveness condition the N First Order Conditions together represent a contraction of $\left(e_{1}, \ldots, e_{N}\right)$ in the $\left(\mathbb{R}^{N}, \mathfrak{M}\right)$ metric space, where \mathfrak{M} is the max norm. This implies uniqueness.

2.2 Social effects

The reduced form expression (3) that is generated in equilibrium resembles the typical equation of a "linear-in-means" models from the peer effects literature, but comes with additional insights. First, parameter β - corresponding to the endogenous effect from the original classification by Manski (1993) - is given a clear behavioral interpretation: it is equal to the direct effect of connections' effort v amplified by a factor representing the equilibrium response of individual effort caused by complementarities: intuitively, students put additional effort while firms increase their R\&D investment as they are

[^4]aware of the interdependencies and expect their connections to behave similarly. This interpretation of β is important, since in many empirical studies of social externalities individual "effort" is not observable by researchers. In general, however, not even the combined parameter β is identified, as we show next through a constructed example.

Proposition 2. Non-identification of endogenous social effects. Suppose that in model (3) it is $\gamma=\beta=0$, hence $y_{i}=\alpha+\varepsilon_{i}$. There exist restrictions on $\mathcal{F}(\cdot)$ such that, under Assumptions 1-3, such a simple model is observationally equivalent to:

$$
\begin{equation*}
y_{i}=\alpha^{\prime}+\beta^{\prime} \sum_{j=1}^{N} g_{i j} y_{j}+\gamma^{\prime} x_{i}+\varepsilon_{i}^{\prime} \tag{5}
\end{equation*}
$$

where $\boldsymbol{\gamma}^{\prime}, \boldsymbol{\beta}^{\prime} \neq 0$ and the random vector $\boldsymbol{\varepsilon}^{\prime}=\left(\varepsilon_{1}^{\prime}, \ldots, \varepsilon_{N}^{\prime}\right)$ is such that $\mathbb{E}\left[\varepsilon^{\prime} \mid \mathbf{x}, \mathcal{G}\right]=\mathbf{0}$. Proof. Let $\mathcal{F}(\cdot)$ be such that $\varepsilon_{i}=\rho \sum_{j=1}^{N} g_{i j} \varepsilon_{j}+v_{i}$ and $\mathbb{E}\left[v_{i} \mid \mathbf{x}, \mathcal{G}\right]=\pi_{0}+\pi_{1} x_{i}$, where $|\rho| \in(0,1)$ and $\pi_{1} \neq 0$. One can verify that $y_{i}=\alpha+\varepsilon_{i}$ is observationally equivalent to model (5) for $\alpha^{\prime}=\alpha(1-\rho)+\pi_{0}, \beta^{\prime}=\rho$, and $\gamma^{\prime}=\pi_{1}$.

This stylized example highlights the key issue that this paper is concerned with: researchers can mistake behavioral externalities for unobserved confounders that are shared, to some degree, by multiple observations. Although the two mechanisms can deliver indistinguishable statistical patterns in the data, the latter, unlike the former, does not allow to make causal claims or draw policy implications. This was, at heart, the critique of the whole peer effects literature put forward by Angrist (2014).

The second difference with typical linear-in-means models is that in our model we do not include Manski's exogenous effect, that is a structural dependence of individual outcomes on the characteristics x_{j} of peers (also called contextual effects). Although we could easily include an additional term in (2) to include the exogenous effect, such a choice is liable to the following critique.

Proposition 3. Non-identification of exogenous effects. There exist specific restrictions on $\mathcal{F}(\cdot)$ such that, under Assumptions 1-3, model (3) is observationally equivalent to the following statistical model:

$$
\begin{equation*}
y_{i}=\alpha^{\prime \prime}+\beta^{\prime \prime} \sum_{j=1}^{N} g_{i j} y_{j}+\gamma^{\prime \prime} x_{i}+\delta^{\prime \prime} \sum_{j=1}^{N} g_{i j} x_{j}+\varepsilon_{i}^{\prime \prime} \tag{6}
\end{equation*}
$$

where $\delta^{\prime \prime} \neq 0$ and the random vector $\varepsilon^{\prime \prime}=\left(\varepsilon_{1}^{\prime \prime}, \ldots, \varepsilon_{N}^{\prime \prime}\right)$ is such that $\mathbb{E}\left[\varepsilon^{\prime \prime} \mid \mathbf{x}, \mathcal{G}\right]=\mathbf{0}$.

Proof. Let $\mathcal{F}(\cdot)$ be such that $\varepsilon_{i}=\rho \sum_{j=1}^{N} g_{i j} \varepsilon_{j}+\varepsilon_{i}^{\prime \prime}$ and $\mathbb{E}\left[\varepsilon_{i} \mid \mathbf{x}, \mathcal{G}\right]=\kappa_{0}+\kappa_{1} x_{i}$, where $|\rho| \in(0,1)$ and $\kappa_{1} \neq 0$. One can verify that models (3) and (5) are observationally equivalent for $\alpha^{\prime \prime}=\alpha+\rho \kappa_{0}, \beta^{\prime \prime}=\beta, \gamma^{\prime \prime}=\gamma$ and $\delta^{\prime \prime}=\rho \kappa_{1}$.

This additional example helps make an important point. ${ }^{8}$ If unobservables ε_{i} are cross-correlated in the network and, in addition, the observables x_{i} are correlated with the unobservables ε_{i}, then "contextual effects," say parametrized by δ^{\prime}, can emerge as a statistical byproduct of more fundamental structural or stochastic patterns. We see this as a cautionary message to researchers aiming to estimate spillover effects in any setting: the solution of any endogeneity problems due to simultaneous unobservables (and possibly network formation) must precede model specification. For this reason, we restrict our main discussion of identification, our Monte Carlo simulations, as well as our empirical application to models without exogenous effects (still, we allow for them in both our general model and in the construction of our estimator).

2.3 Spatial linear endogeneity

In this paper we focus on restrictions on $\mathcal{F}(\cdot)$ expressed through the following linear statistical relationship between observable characteristics x_{i} and unobservables ε_{i}, for $i=1, \ldots, N$:

$$
\begin{equation*}
x_{i}=\widetilde{x}_{i}+\xi \sum_{j=1}^{N} c_{i j} \varepsilon_{j} . \tag{7}
\end{equation*}
$$

In the above, $\xi \in \mathbb{R}$ is a parameter; \widetilde{x}_{i} is a random variable that we call the independent component of the variation of x_{i}, whose distribution is left unrestricted except for being assumed continuous ($\widetilde{x}_{i} \neq \widetilde{x}_{j}$ almost surely for $i \neq j$) as well as independent of individual unobservables $\left(\mathbb{E}\left[\widetilde{x}_{i} \varepsilon_{j}\right]=0\right.$ for any $\left.i, j\right)$; whereas the weights $c_{i j}$, that we call characteristic weights, introduce the statistical spatial dependence of interest. Like in the case of the adjacency weights $g_{i j}$, we impose the normalization $c_{i j} \in[0,1]$; unlike those, however, typically it is $c_{i i} \neq 0$. We collect all the characteristic weights in the N^{2}-dimensional set \mathcal{C}, that we call the "characteristics structure."

[^5]We denominate the relationship given in (7) a case of spatial linear endogeneity. This feature of the model can flexibly represent various patterns of interdependence between the observables of one agent and the unobservables of other agents. We find it is useful to discuss a number of settings, that are of interest for applied researchers, where specification (7) can be used to characterize the endogeneity problem of interest.

Segregated groups. Perhaps the simplest cases are those where it is possible to ex-ante partition the population of interest into groups that are subject to "common shocks" that affect observables x_{i} and unobservables ε_{i} alike. In a schooling context, for example, the quality of teachers and the overall resources made available to a pupil $\left(x_{i}\right)$ may endogenously depend on their preferences and/or the ability $\left(\varepsilon_{i}\right)$ of their classmates. This might be induced via an explicit school-level allocation mechanism, if say more motivated students are assigned the best resources or, conversely, more disadvantaged ones are compensated with some extra support. In this case, \mathcal{C} displays a "fully segregated" group structure derived from that of classrooms. ${ }^{9}$ We place no restriction upon the statistical or the topological relationship between \mathcal{C} and \mathcal{G} : the network of interactions can both transcend, and statistically depend upon, the groups defined by \mathcal{C}. This is exemplified in Graph 1 , which is inspired by typical schooling environments: friendships are more likely to occur within than between classrooms.

Group A

Graph 1: A Cross-Group Friendship Network

Notes. In this graph, nodes (e.g. i, j, k, ℓ) represents observations, edges denote social interactions (e.g. "friendships") embodied in \mathcal{G}, whereas groups of observations bound within dash-dotted squares depict a fully segregated characteristics structure \mathcal{C}. Thus, it is for example $g_{i \ell} \neq 0$ but $c_{i \ell}=0$, and at the same time, $g_{i k}=0$ but $c_{i k} \neq 0$.

[^6]Spatial correlation. We do not restrict \mathcal{C} to fully segregated group structures: we allow it to represent any metric space defined over the set of observations \mathcal{I}, with possibly $c_{i j} \neq 0$ for any pair (i, j). Consider, for example, a population of competing firms, where x_{i} represents a firm's feature such as its size, age or product portfolio; ε_{i} represents unobserved characteristics such as the local environment where the firm operates or other cost factors; while y_{i} is some outcome of interest (e.g. book value). One can think of settings where, say because of competition in geographical space, both y_{i} and x_{i} depend on the unobservables of all firms of interest. Thus, \mathcal{C} can be specified as a collection of weights that are the inverse of any two firms' distance in the geographical, technological or product market space. These ideas may also apply to individuals: for example, in our empirical application about university students we examine structures \mathcal{C} consistent with a spatial correlation of observable characteristics that exhibits, for two observations i and j and some $D>0$, distance decay:

$$
\begin{equation*}
\operatorname{Cov}\left(x_{i}, x_{j}\right) \propto \exp \left(-D \cdot d_{i j}\right), \tag{8}
\end{equation*}
$$

where $d_{i j}$ is the geographical distance between the districts where students hail from. ${ }^{10}$
Limited network dependence. A leading case is that where the characteristics structure and the network topology overlap to some degree: for example, if $c_{i i}=1$ for $i=1, \ldots, N$ and $c_{i j}=\psi g_{i j}$ for $i \neq j$ and $\psi \in(0,1]$. Assuming that the elements in $\boldsymbol{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{N}\right)$ are mutually independent, the spatial correlation in the observables increase along the total strength of two observations' (say i and j) mutual connections:

$$
\begin{equation*}
\operatorname{Cov}\left(x_{i}, x_{j}\right) \propto \psi g_{j i} \mathbb{V} \operatorname{ar}\left(\varepsilon_{i}\right)+\psi g_{i j} \mathbb{V} \operatorname{ar}\left(\varepsilon_{j}\right)+\psi^{2} \sum_{k=1}^{N} g_{i k} g_{j k} \mathbb{V} \operatorname{ar}\left(\varepsilon_{k}\right) \tag{9}
\end{equation*}
$$

How can this partial overlap emerge? Suppose that the characteristics structure \mathcal{C} is exogenous, while the network \mathcal{G} is endogenous and features homophily: the conditional distribution of one link, say $g_{i j}$, is a negative function of $\left|x_{i}-x_{j}\right|$. Hence, conditional on the observed network topology the characteristics of any two observations that are "close" in network space are expected to be similar, and the two sets \mathcal{C} and \mathcal{G} to be

[^7]correlated (in the simple example above, parameter ψ can be interpreted as a measure of the strength of homophily). Note that although we allow for quite general patterns of correlation between \mathbf{x} and \mathcal{G}, we maintain throughout that the vector of unobserved "errors" ε is mean-independent of the network topology. In the general version of the model developed in Section 3.2, however, we allow second-order moments of the $\boldsymbol{\varepsilon}$ to be general functions of \mathcal{G}. This may accommodate restricted patterns of endogenous network formation featuring homophily on both observables and unobservables, but that maintain the mean-independence property of the error term. ${ }^{11}$

Simple dependence on SARMA errors. A relatively simple case is that where the structural dependence between observables and unobservables does not directly involve the errors of other observation (that is, $c_{i j}=0$ if $i \neq j$) but the errors follow some exogenous pattern of cross-correlation in network space, similarly to the cases exposed in Propositions 2 and 3. Production functions provide an excellent example: according to the First Order Conditions from firm optimization under perfect competition, firm-level shocks ε_{i} (but not the shocks of other firms ε_{j}) "transmit" to inputs x_{i}; however, shocks can be spatially correlated (due e.g. to technological similarities), something that can be mistaken for spillover effects. If the spatial correlation process is known, e.g. if it follows some Spatial AutoRegressive Moving Average (SARMA) process with known order and parameters, one can specify a characteristics structure \mathcal{C} and a set of "primitive shocks" $\boldsymbol{v}=\left(v_{1}, \ldots, v_{N}\right)$ such that, for $i=1, \ldots, N$:

$$
\begin{equation*}
x_{i}=\widetilde{x}_{i}+\xi \varepsilon_{i}=\widetilde{x}_{i}+\xi \sum_{j=1}^{N} c_{i j} v_{j} \tag{10}
\end{equation*}
$$

with the resulting model based on \boldsymbol{v} bearing implications for identification similar to those from the baseline case (7). This is best understood within the discussion of the general model in Section 3.2. The latter also allows for unknown SARMA parameters that are identified through covariance restrictions.

[^8]
3 Identification

In this section we characterize the conditions for the identification of social effects under our endogeneity specification. We first illustrate them in the simpler case with one observable characteristic and no exogenous effect; later we examine a more general model and the implications of further extensions.

3.1 Bivariate SAR model

Our starting point is the structural relationship (3) combined with the spatial linear endogeneity specification (7). It is more convenient to rewrite both expressions using compact notation. Specifically, (3) renders as:

$$
\begin{equation*}
\mathbf{y}=\alpha \iota+\beta \mathbf{G y}+\gamma \mathbf{x}+\varepsilon \tag{11}
\end{equation*}
$$

while (7) renders as:

$$
\begin{equation*}
\mathbf{x}=\widetilde{\mathrm{x}}+\xi \mathbf{C} \varepsilon \tag{12}
\end{equation*}
$$

where $\mathbf{y}, \mathbf{x}, \boldsymbol{\varepsilon}$ and $\widetilde{\mathbf{x}}=\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{N}\right)$ are arrayed as column vectors, while \mathbf{G} and \mathbf{C} are two adjacency matrices of dimension $N \times N$ that array the elements of \mathcal{G} and \mathcal{C}, respectively. ${ }^{12}$ For illustratory purposes, we omit for now the subindices denoting the sample size N. So long as our assumptions are upheld, we impose no restrictions on the realizations of \mathbf{G} that are allowed by the data generation process. In particular, G may represent a single large network to which all agents in \mathcal{I} belong, like the body of students from Bocconi University examined by De Giorgi et al. (2010) and in our empirical application, or a sample of smaller networks with no connections between them as in applications based on separate classes, like e.g. in Bramoullé et al. (2009). Recall, though, that under Assumption 3 no agent is allowed to be "isolated."

Model (11) is a spatially autoregressive (SAR) model according to the classification of spatial econometric models by Elhorst (2014). ${ }^{13}$ Hence, our ensuing discussion of identification applies to a particular version of a SAR model where \mathbf{x} and ε are related through \mathbf{C} as in (12). Note that there is one case where identification is trivial: if \mathbf{C}

[^9]has rank less than N, researchers may find a matrix \mathbf{B} of dimension $N \times N$ such that $\mathbf{B C} \boldsymbol{\varepsilon}=\mathbf{0}$ and model (11) can be reshaped as:
\[

$$
\begin{equation*}
\mathbf{B y}=\alpha \mathbf{B} \imath+\beta \mathbf{B G} \mathbf{y}+\gamma \mathbf{B} \mathbf{x}+\mathbf{B} \varepsilon, \tag{13}
\end{equation*}
$$

\]

a transformed SAR model which is identified and estimable via standard approaches since, by construction, $\mathbf{B} \boldsymbol{\varepsilon}$ is mean-independent of $\mathbf{B x}=\mathbf{B} \widetilde{\mathbf{x}}$. A particular example is that where \mathcal{C} describes a set of "fully segregated" groups with characteristics weights that are identical within groups; hence, $\xi \mathbf{C} \boldsymbol{\varepsilon}$ would feature identical values within a group and \mathbf{B} would be a simple group-demeaning matrix. ${ }^{14}$ However, we show in both our Monte Carlo simulations and in our empirical application that transformations of this sort can yield estimates that are too imprecise, arguably because they remove much of the relevant statistical variation even if the rank of \mathbf{C} is fairly low. We argue as a consequence that the approach we propose in this paper is useful beyond those only cases where \mathbf{C} has full (or close to full) rank.

To study identification, it is useful to verify that standard moments in the spirit of Lee (2007a), that are based on the spatial lags of \mathbf{x}, are invalid. For the sake of illustration, we assume that the error term ε is mean independent of the network \mathbf{G}, the characteristics matrix \mathbf{C}, and the independent component of the variation of \mathbf{x} :

$$
\begin{equation*}
\mathbb{E}[\varepsilon \mid \mathbf{G}, \mathbf{C}, \widetilde{\mathbf{x}}]=\mathbf{0} . \tag{14}
\end{equation*}
$$

In addition, we also assume that the error term is conditionally homoscedastic:

$$
\begin{equation*}
\mathbb{E}\left[\varepsilon \varepsilon^{\mathrm{T}} \mid \mathbf{G}, \mathbf{C}, \tilde{\mathbf{x}}\right]=\sigma_{0}^{2} \mathbf{I} \tag{15}
\end{equation*}
$$

Under this hypothesis, for any nonnegative integer q we obtain:

$$
\begin{align*}
\mathbb{E}\left[\left(\mathbf{G}^{q} \mathbf{x}\right)^{\mathrm{T}} \varepsilon \mid \mathbf{G}, \mathbf{C}, \widetilde{\mathbf{x}}\right] & =\mathbb{E}\left[(\widetilde{\mathbf{x}}+\xi \mathbf{C} \boldsymbol{\varepsilon})^{\mathrm{T}}\left(\mathbf{G}^{q}\right)^{\mathrm{T}} \varepsilon \mid \mathbf{G}, \mathbf{C}, \widetilde{\mathbf{x}}\right] \\
& =\xi \cdot \mathbb{E}\left[\varepsilon^{\mathrm{T}}\left(\mathbf{G}^{q} \mathbf{C}\right)^{\mathrm{T}} \varepsilon \mid \mathbf{G}, \mathbf{C}, \widetilde{\mathbf{x}}\right] \tag{16}\\
& =\xi \cdot \operatorname{Tr}\left(\mathbf{C G}^{q} \cdot \mathbb{E}\left[\varepsilon \varepsilon^{\mathrm{T}} \mid \mathbf{G}, \mathbf{C}, \widetilde{\mathbf{x}}\right]\right) \\
& =\xi \sigma_{0}^{2} \cdot \operatorname{Tr}\left(\mathbf{C G}^{q}\right) .
\end{align*}
$$

[^10]In this derivation, the second line exploits the fact that $\mathbb{E}\left[\left(\mathbf{G}^{q} \widetilde{\mathbf{x}}\right)^{\mathrm{T}} \varepsilon \mid \mathbf{G}, \mathbf{C}, \widetilde{\mathbf{x}}\right]=0$ as per (14), an expression that can be recast in terms of an unconditional moment:

$$
\begin{equation*}
\mathbb{E}\left[(\mathbf{x}-\xi \mathbf{C} \boldsymbol{\varepsilon})^{\mathrm{T}} \mathbf{G}^{q} \varepsilon\right]=0 \tag{17}
\end{equation*}
$$

for $q=0,1,2$ or higher (we will return later to expression (17) because it helps develop intuition for our identification result). The result derived in (16) highlights why standard moments have a non-zero expectation under our endogeneity specification: ${ }^{15}$ if the characteristics structure and the network topology overlap to some extent (i.e. $\left.\operatorname{Tr}\left(\mathbf{C G}^{q}\right) \neq 0\right)$, the individual unobservables are correlated with the observable characteristics of one's "peers-of-peers." Notice that we derived an explicit expression for the bias. This suggests a natural set of moment conditions $\mathbf{m}(\boldsymbol{\vartheta})$ for the identification of the combined parameters $\vartheta \equiv\left(\alpha, \beta, \gamma, \xi^{*}\right)$, where $\xi^{*} \equiv \xi \sigma_{0}^{2}$:

$$
\begin{equation*}
\mathbb{E}[\mathbf{m}(\boldsymbol{\vartheta})]=\mathbb{E}\left[\mathbf{K}^{\mathrm{T}}(\mathbf{y}-\alpha \iota-\beta \mathbf{G} \mathbf{y}-\gamma \mathbf{x})-\xi^{*} \boldsymbol{\lambda}\right]=\mathbf{0} \tag{18}
\end{equation*}
$$

with:

$$
\begin{aligned}
\mathbf{K} & \equiv\left[\begin{array}{llll}
\mathbf{l} & \mathbf{x} & \mathbf{G} \mathbf{x} & \mathbf{G}^{2} \mathbf{x}
\end{array}\right] \\
\boldsymbol{\lambda} & \equiv\left[\begin{array}{llll}
0 & \operatorname{Tr}(\mathbf{C}) & \operatorname{Tr}(\mathbf{C G}) & \operatorname{Tr}\left(\mathbf{C G}^{2}\right)
\end{array}\right]^{\mathrm{T}} .
\end{aligned}
$$

In fact, identification of ϑ is possible under quite general conditions.
Proposition 4. Identification of the bivariate SAR model. Consider the statistical model expressed by equations (11), (12), (14) and (15); and suppose that matrices \mathbf{C} and \mathbf{G} are observed. If the three matrices \mathbf{I}, \mathbf{G} and \mathbf{G}^{2} are linearly independent of one another and the traces $\operatorname{Tr}(\mathbf{C}), \operatorname{Tr}(\mathbf{C G})$ and $\operatorname{Tr}\left(\mathbf{C G}^{2}\right)$ are not simultaneously all zeros, the combined parameters $\vartheta \equiv\left(\alpha, \beta, \gamma, \xi^{*}\right)$ are globally identified.

Proof. Express (18) as a function of an arbitrary parameter vector $\tilde{\vartheta}=\left(\tilde{\alpha}, \tilde{\beta}, \tilde{\gamma}, \tilde{\xi}^{*}\right)$:

$$
\begin{align*}
\mathbb{E}[\mathrm{m}(\tilde{\vartheta})] & =\mathbb{E}\left[\left(\mathbf{K}_{\tilde{x}}+\mathbf{K}_{\varepsilon}\right)^{\mathrm{T}}\left[\left(\mathbf{S}_{\widetilde{x}}+\mathbf{S}_{\varepsilon}\right)\left(\boldsymbol{\vartheta}_{\backslash \xi^{*}}-\tilde{\vartheta}_{\backslash \tilde{\xi}^{*}}\right)+\varepsilon\right]-\tilde{\tilde{\xi}}^{*} \boldsymbol{\lambda}\right] \\
& =\left[\mathbb{E}\left[\mathbf{K}_{\widetilde{\boldsymbol{x}}}^{\mathrm{T}} \mathbf{S}_{\tilde{x}}+\mathbf{K}_{\varepsilon}^{\mathrm{T}} \mathbf{S}_{\varepsilon}\right] \quad \boldsymbol{\lambda}\right](\boldsymbol{\vartheta}-\tilde{\vartheta}), \tag{19}
\end{align*}
$$

[^11]where $\vartheta_{\backslash \xi^{*}}=(\alpha, \beta, \gamma), \tilde{\vartheta}_{\backslash \tilde{\xi}^{*}}=(\tilde{\alpha}, \tilde{\beta}, \tilde{\gamma})$, and:
\[

$$
\begin{aligned}
\mathbf{K}_{\tilde{x}} & \equiv\left[\begin{array}{llll}
\iota & \widetilde{\mathbf{x}} & \mathbf{G} \widetilde{\mathbf{x}} & \mathbf{G}^{2} \widetilde{\mathbf{x}}
\end{array}\right] \\
\mathbf{K}_{\varepsilon} & \equiv\left[\begin{array}{llll}
\mathbf{0} & \xi \mathbf{C} \varepsilon & \xi \mathbf{G C} \boldsymbol{\varepsilon} & \xi \mathbf{G}^{2} \mathbf{C} \varepsilon
\end{array}\right] \\
\mathbf{S}_{\tilde{x}} & \equiv\left[\begin{array}{lll}
\iota & \mathbf{G}(\mathbf{I}-\beta \mathbf{G})^{-1}(\alpha \iota+\gamma \widetilde{\mathbf{x}}) & \widetilde{\mathbf{x}}
\end{array}\right] \\
\mathbf{S}_{\varepsilon} & \equiv\left[\begin{array}{lll}
\mathbf{0} & \mathbf{G}(\mathbf{I}-\beta \mathbf{G})^{-1}(\mathbf{I}+\gamma \xi \mathbf{C}) \varepsilon & \xi \mathbf{C} \varepsilon
\end{array}\right],
\end{aligned}
$$
\]

with $\mathbf{K}=\mathbf{K}_{\tilde{\boldsymbol{x}}}+\mathbf{K}_{\varepsilon}, \mathbf{y}=\left(\mathbf{S}_{\widetilde{\boldsymbol{x}}}+\mathbf{S}_{\varepsilon}\right) \vartheta_{\backslash \xi^{*}}+\boldsymbol{\varepsilon}, \mathbb{E}\left[\mathbf{K}_{\widetilde{\boldsymbol{x}}}^{\mathrm{T}} \mathbf{S}_{\varepsilon}\right]=\mathbb{E}\left[\mathbf{K}_{\varepsilon}^{\mathrm{T}} \mathbf{S}_{\widetilde{\boldsymbol{x}}}\right]=\mathbb{E}\left[\mathbf{K}_{\widetilde{\boldsymbol{x}}}^{\mathrm{T}} \varepsilon\right]=\mathbf{0}$, and $\mathbb{E}\left[\mathbf{K}_{\varepsilon}^{\mathrm{T}} \varepsilon\right]=\boldsymbol{\xi}^{*} \boldsymbol{\lambda}$. The parameter set ϑ is uniquely identified if the only solution that sets (19) at zero is $\tilde{\boldsymbol{\vartheta}}=\boldsymbol{\vartheta}$, which is ensured if matrix $\left[\mathbb{E}\left[\mathbf{K}_{\tilde{\boldsymbol{x}}}^{\mathrm{T}} \mathbf{S}_{\tilde{\boldsymbol{x}}}+\mathbf{K}_{\boldsymbol{\varepsilon}}^{\mathrm{T}} \mathbf{S}_{\varepsilon}\right] \boldsymbol{\lambda}\right]$ has rank four. This holds under the maintained conditions.

This is a powerful result: it states that if the researcher has some knowledge about the spatial extent of the process which relates the observable characteristics of agents to the unobservables of some others, then the parameters of the SAR model, including the "endogenous" social effect β, can be identified under the same conditions given by Bramoullé et al. (2009): that the network \mathcal{G} is not shaped according to a "fully overlapping" group structure. In addition, it is necessary that the characteristics matrix C overlaps at least partially with the network, but otherwise it is left unrestricted; it is allowed to assume a group structure or even to coincide with the adjacency matrix G. The latter condition, however, is generally moot, since its violation would prevent the identification of the combined parameter ξ^{*}, but not that of the main parameters of interest (α, β, γ). In fact, if the spatial correlation of individual characteristics is unrelated to the network \mathcal{G} there is no endogeneity, and standard "peers-of-peers" instruments are valid! This point also illustrates why estimates from empirical studies where \mathcal{G} is randomized might still be inconsistent. In fact, if \mathcal{C} is "pervasive," i.e. for most pairs $(i, j) \in \mathcal{I}^{2}$ it is $c_{i j} \neq 0$, it is likely that $\operatorname{Tr}\left(\mathbf{C G}^{q}\right) \neq 0$ even with a random network. We illustrate this point in our empirical application.

We illustrate the intuition behind identification in two ways: algebraic-statistical and graphical. Regarding the former, note that \mathbf{y} can be solved as:

$$
\begin{equation*}
\mathbf{y}=(\mathbf{I}-\beta \mathbf{G})^{-1}[\alpha \iota+\gamma(\widetilde{\mathbf{x}}+\xi \mathbf{C} \boldsymbol{\varepsilon})+\boldsymbol{\varepsilon}]=\sum_{s=0}^{\infty} \beta^{s} \mathbf{G}^{s}[\alpha \iota+\gamma \widetilde{\mathbf{x}}+(\mathbf{I}+\gamma \xi \mathbf{C}) \boldsymbol{\varepsilon}] \tag{20}
\end{equation*}
$$

Thus, by an argument à la Bramoullé et al. (2009) the model is identified via a set of instruments of the form $\mathbf{G}^{s} \widetilde{\mathbf{x}}$, which are unfeasible since $\widetilde{\mathbf{x}}$ is unobserved. Expression (20) also suggests that if $\widetilde{\mathbf{x}}$ and \mathbf{C} are both observed, ξ, is separately identified. The appealing nonlinear moments (17), instrumental to our derivation, embed both ideas: they recast the unfeasible moment conditions so that the independent component of \mathbf{x} is backed up from its constitutent parts. This is feasible as ξ is identified internally to this approach. One can also gather intuition about the joint identification of all the parameters via a graph. Consider the four observations (i, j, k, ℓ) that are involved in both the network and the group structure represented in Graph 1. According to (20), the variation of y_{i} is explained by the variation of all the elements in $\left(x_{i}, x_{j}, x_{k}, x_{\ell}\right)$, albeit in a different way. This is represented in Graph 2, which "zooms in" the four nodes of interest and in addition, it displays some labeled dashed arrows showing what parameters does each observed characteristic contribute to identify. For example, both nodes j and ℓ are connected to i; hence, variation in both x_{j} and x_{ℓ} helps identify the combined parameter $\gamma \beta$. However, x_{j} (unlike x_{ℓ}) also contributes to the identification of ξ^{*}, because node j (unlike node ℓ) belongs to the same "group" as node i.

Graph 2: Identification: graphical intuition
Notes. This graph elaborates the analysis of nodes (i, j, k, ℓ) from Graph 1, which are related through both a network structure \mathcal{G} (represented by circles and straight lines) and a "grouped" characteristics structure \mathcal{C} (delimited by dash-dotted lines). Directed dashed arrows that connect the variables encapsulated in either node are labeled by to the parameter combinations that every observable characteristic on the sending side of the arrow (x_{i}, x_{j}, x_{k} or x_{ℓ}, with y_{i} always on the receiving side) contributes to identify per (20). Variable x_{i} is enclosed in a dotted circle to remark that it does not arise from a node (an observation) different from y_{i} 's.

3.2 Multivariate SDM model

The identification result illustrated by Proposition 4 is restricted to a simple model under very restrictive structure of the error terms and assumptions. We thus turn to the discussion of the following, more general model:

$$
\begin{equation*}
\mathbf{y}=\alpha \iota+\beta \mathbf{G y}+\mathbf{X} \boldsymbol{\gamma}+\mathbf{G X} \boldsymbol{\delta}+\boldsymbol{\varepsilon} \tag{21}
\end{equation*}
$$

where \mathbf{X} is a $N \times K$ matrix of K random observable characteristics, $\boldsymbol{\gamma}=\left(\gamma_{1}, \ldots, \gamma_{K}\right)$ is the vector of K direct effects associated with each of these, while $\boldsymbol{\delta}=\left(\delta_{1}, \ldots, \delta_{K}\right)$ are the K "contextual effects." Under Elhorst's (2014) classification, this is a standard multivariate "Spatial Durbin Model" (SDM); when G is row-normalized, this model is known as the "linear-in-means" in the peer effects literature. Model (21) can easily follow from an extension of our theoretical framework, where nature initially draws $(\mathbf{X}, \boldsymbol{\varepsilon}, \mathcal{G})$ from some more general distribution $\mathcal{F}(\cdot) .{ }^{16}$ This model is interesting in two non-alternative cases: (i) all observable characteristics \mathbf{X} are endogenous, structurally dependent on $\boldsymbol{\varepsilon}$, (ii) researchers aim for consistent estimation of all parameters in $\boldsymbol{\gamma}$ and $\boldsymbol{\delta}$, in addition to β. In fact, if researchers are only interested in the identification and consistent estimation of β, a single exogenous observable characteristic \mathbf{x} suffices, provided that endogenous columns of \mathbf{X} are dropped.

In addition, we allow for a more general structure of the error term ε, which we make explicit through the following assumptions.

Assumption 4. Primitive shocks: there exists a set of N "primitive" i.i.d. shocks $\boldsymbol{v} \equiv\left(v_{1}, \ldots, v_{N}\right)^{\mathrm{T}}$ such that $\mathbb{E}[\boldsymbol{v}]=\mathbf{0}$ and, for some $d>0, \mathbb{E}\left[\left|v_{i}\right|^{4+d}\right]<\infty$ for $i=1, \ldots, N$.

Assumption 5. SARMA Unobservables: the unobservable characteristics follow a stationary Spatial Autoregressive Moving Average process of order (A, M):

$$
\boldsymbol{\varepsilon}=\left(\mathbf{I}-\phi_{1} \mathbf{F}_{1}-\phi_{2} \mathbf{F}_{2}-\cdots-\phi_{A} \mathbf{F}_{A}\right)^{-1}\left(\mathbf{I}+\psi_{1} \mathbf{E}_{1}+\psi_{2} \mathbf{E}_{2}+\cdots+\psi_{M} \mathbf{E}_{M}\right) \boldsymbol{v}
$$

where $\left(\mathbf{F}_{1}, \mathbf{F}_{2}, \ldots, \mathbf{F}_{A}\right)$ and $\left(\mathbf{E}_{1}, \mathbf{E}_{2}, \ldots, \mathbf{E}_{M}\right)$ are two possibly identical sets of linearly independent $N \times N$ matrices; $\mathbf{I}-\sum_{a=1}^{A} \phi_{a} \mathbf{F}_{a}$ and $\mathbf{I}+\sum_{m=1}^{M} \psi_{a} \mathbf{E}_{a}$ are both invertible, and the associated parameters lie within the unit circle: $\|\boldsymbol{\phi}\|_{2}<1$ and $\|\boldsymbol{\Psi}\|_{2}<1$.

[^12]Together, these two assumptions characterize the stochastic properties of the error term, which is allowed to have a very general spatial correlation structure expressed in terms of a sequence of "primitive" well-behaved shocks. The spatially autoregressive component of the error term is defined by the sequence of matrices $\left(\mathbf{F}_{1}, \ldots, \mathbf{F}_{A}\right)$ and the parameter set $\boldsymbol{\phi}=\left(\phi_{1}, \ldots, \phi_{A}\right)$; the moving average part is encapsulated by matrices $\left(\mathbf{E}_{1}, \ldots, \mathbf{E}_{M}\right)$ and parameters $\boldsymbol{\psi}=\left(\psi_{1}, \ldots, \psi_{M}\right)$. Both matrix sequences are allowed to coincide and depend on the network structure; a leading case that we allow is $\mathbf{F}_{a}=\mathbf{G}^{a}$ for $a \leq A$ and $\mathbf{E}_{m}=\mathbf{G}^{m}$ for $m \leq M$. While this specification is quite flexible, we are especially interested in the Spatial Moving Average (SMA) component of the process. If the spatially autocorrelated component is missing $(\boldsymbol{\phi}=\mathbf{0})$ the SMA process alone implies zero spatial autocorrelation for observations unrelated through the \mathbf{E}_{m} matrices. We find this empirical property to be a good approximation of some real-world stylized facts about variables that are diffused in networks. ${ }^{17}$ Although our identification results extend to any SARMA process, our estimation framework and Monte Carlo simulations specialize to a simple SMA(1) process, or $(A, M)=(0,1)$.

The next assumption generalizes expression (7), which characterizes the spatial extent of endogeneity, to the multivariate case. In particular, we associate a different characteristics matrix \mathbf{C}_{k} to each of the K variables in \mathbf{X}. For the sake of exposition we assume that $\mathbf{C}_{k} \neq \mathbf{0}$ for $k=1, \ldots, K$. This facilitates the ensuing discussion about the identification of the multiplicative parameters associated with these matrices.

Assumption 6. Multivariate Spatial Linear Endogeneity: each column of \mathbf{X} is given, for $k=1, \ldots, K$, by:

$$
\begin{equation*}
\mathbf{X}_{*, k}=\widetilde{\mathbf{x}}_{k}+\xi_{k} \mathbf{C}_{k} \boldsymbol{v} \tag{22}
\end{equation*}
$$

where $\xi_{k} \in \mathbb{R}, \mathbf{C}_{k} \neq \mathbf{0}$ is an $N \times N$ characteristics matrix specific to the k-th observable characteristic, while $\widetilde{\mathbf{x}}_{k}$ is a random vector of length K with finite mean. In addition, we assume that for any two $k, k^{\prime}=1, \ldots, K$ with possibly $k=k^{\prime}$, the probability limit defined as $\Xi_{k k^{\prime}} \equiv \operatorname{plim} N^{-1} \sum_{i=1}^{N}\left(\widetilde{x}_{k i}-\mathbb{E}\left[\widetilde{x}_{k i}\right]\right)\left(\widetilde{x}_{k^{\prime} i}-\mathbb{E}\left[\widetilde{x}_{k^{\prime} i}\right]\right)$ is finite.

[^13]Observe a difference relative to the simpler one-characteristic case given in (7): in the latter, matrix \mathbf{C} multiplies the error terms ε_{i} 's of the model; in (22), each of the K characteristic matrices \mathbf{C}_{k} multiplies the "primitive" shocks v_{i} 's. We believe that this specification, together with our SARMA specification of the error term, is more flexible and can capture a number of realistic specifications of endogeneity, as already discussed in Section 2.3. ${ }^{18}$ However, our results about identification and estimation would be easy to extend to a setup where the specification of endogeneity in (22) were to involve $\boldsymbol{\varepsilon}$ (which would still follow a generalized SARMA process) instead of \boldsymbol{v}.

Our final identification-related assumption is the following.
Assumption 7. Exogeneity of the spatial structures: conditional upon the set $\mathcal{S}=\left\{\mathbf{G} ; \mathbf{C}_{1}, \ldots, \mathbf{C}_{K} ; \widetilde{\mathbf{x}}_{1}, \ldots, \widetilde{\mathbf{x}}_{K}\right\}$ that comprises: (i) the network adjacency matrix, (ii) the K characteristics matrices, as well as (iii) the K independent component of the individual characteristics, the primitive shocks have mean zero and are homoscedastic:

$$
\begin{align*}
\mathbb{E}[\boldsymbol{v} \mid \mathcal{S}] & =\mathbf{0}, \tag{23}\\
\mathbb{E}\left[\boldsymbol{v} \boldsymbol{v}^{\mathrm{T}} \mid \mathcal{S}\right] & =\sigma^{2} \mathbf{I} \tag{24}
\end{align*}
$$

This assumption generalizes (14) and (15) to the general model. As in the previous discussion about the simpler case, this assumption allows to isolate the source of endogeneity introduced via (22) from other confounding factors, such as the endogeneity of the networked structure of interaction or that of the characteristics structure.

Before expressing our main identification result, an important remark is in order. The assumptions that we have introduced so far, especially Assumptions 5, 6 and 7, characterize the complete structure of dependence between the individual observable and unobservable characteristics of any two observations, in whatever metric space of interest, for example the pairwise distance in the network $(\mathcal{I}, \mathcal{G})$. Thus, our framework evades the critique by Goldsmith-Pinkham and Imbens (2013), who lament the lack of general results on cross-observation dependence that would allow identification and inference of the entire data generation process in those settings where all observations are related through a large network (which we allow e.g. in our empirical application). Although our hypotheses about cross-observation dependence are restrictive, they are also very flexible, and the key parameters that characterize them are identified.

[^14]We are now ready to characterize our main result. In what follows, we gather the parameters that measure the extent of spatial endogeneity as $\boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{K}\right)$.

Theorem 1. General Identification Result. Under Assumptions 1-7, the parameters $\boldsymbol{\theta} \equiv\left(\alpha, \beta, \boldsymbol{\gamma}, \boldsymbol{\delta}, \boldsymbol{\xi}, \boldsymbol{\Phi}, \boldsymbol{\Psi}, \sigma^{2}\right)$ are globally identified if $\beta \gamma_{k}+\delta_{k} \neq 0$ for at least one $k=1, \ldots, K$; and the following three conditions hold simultaneously:
(i) the matrices $\mathbf{I}, \mathbf{G}, \mathbf{G}^{2}$ and \mathbf{G}^{3} are linearly independent of one another;
(ii) for $k=1, \ldots, K$, the four traces gathered in the following vector:

$$
\boldsymbol{\lambda}_{k} \equiv\left[\begin{array}{llll}
\operatorname{Tr}\left(\mathbf{C}_{k}\right) & \operatorname{Tr}\left(\mathbf{C}_{k} \mathbf{G}\right) & \operatorname{Tr}\left(\mathbf{C}_{k} \mathbf{G}^{2}\right) & \operatorname{Tr}\left(\mathbf{C}_{k} \mathbf{G}^{3}\right)
\end{array}\right]^{\mathrm{T}}
$$

are not simultaneously all zeros;
(iii) the researcher can observe some $P \geq 1+A+M$ matrices $\left\{\mathbf{P}_{p}\right\}_{p=1}^{P}$ of size $N \times N$ that are all linearly independent of one another.

Proof. See the Appendix. The proof adapts the identification arguments by Lee and Liu (2010). Proposition 4 is a restricted case of this Theorem.

Theorem 1 provides a general identification result for linear-in-means models that feature contextual effects, when the observable characteristics of individuals, the error terms and the interaction structure itself are structurally dependent. In addition, we allow for an error term which is allowed to follow a very general stochastic process, and we show that under specific conditions the associated parameters are identified. The latter is, to the best of our knowledge, a novel result in the spatial econometrics literature, which so far has prevalently examined models whose errors follow simple spatially autoregressive processes. ${ }^{19}$ It is useful to discuss how the conditions established in the theorem enable identification of the model's parameters. We first focus on the "linear" parameters of (21) and the parameters ξ that measure endogeneity; then we move to the components of the SARMA structure of the error term.

First, observe that the condition that social and contextual effects do not cancel out for at least one observable characteristic, i.e. $\exists k \in\{0,1, \ldots, K\}: \beta \gamma_{k}+\delta_{k} \neq 0$, is standard in linear-in-means models (or else β and $\boldsymbol{\delta}$ cannot be distinguished). Next,

[^15]to motivate condition (i) return to our simplified analysis in Proposition 4. There, if matrix \mathbf{G}^{3} is linearly independent from \mathbf{I}, \mathbf{G} and \mathbf{G}^{2}, another moment condition like (16) with $q=3$ can be exploited for identification. In the general case we exploit $Q K$ sets of moments of the following kind, for $q=1, \ldots, Q, Q \geq 4$ and $k=1, \ldots, K$:
\[

$$
\begin{equation*}
\mathbb{E}\left[\mathbf{x}_{k}^{\mathrm{T}} \mathbf{G}^{q-1} \boldsymbol{\varepsilon}-\lambda_{q k}\right]=0 \tag{25}
\end{equation*}
$$

\]

where $\lambda_{q k}$ depends on the assumed SARMA process. Extending the intuition illustrated via Graph 2, the moments based on higher powers of \mathbf{G} allow identification of the contextual effect $\boldsymbol{\mathcal { \delta }}$. Condition (ii), which is necessary for the identification of $\boldsymbol{\xi}$, corresponds with the "not all-zero traces" requirement from Proposition 4. Like that one, this condition is not very interesting: were it not to hold, endogeneity would not be a salient problem in the model. ${ }^{20}$ The variance components are identified through standard covariance restrictions of the following kind, for $p=1, \ldots, P$:

$$
\begin{equation*}
\mathbb{E}\left[\varepsilon^{\mathrm{T}} \mathbf{P}_{p} \varepsilon-\lambda_{p}\right]=0 \tag{26}
\end{equation*}
$$

where again λ_{p} may vary across cases. Clearly, condition (iii) is necessary to rule out collinearity between the P moments; this also applies to the λ_{p} elements. A natural choice for the moment matrices is $\mathbf{P}_{p}=\mathbf{G}^{p-1}$, especially where P is small.

We conclude our treatment of identification with a discussion on the realism and applicability of our assumptions. Our hypotheses about the spatial correlation structure of the error term (Assumption 5), the formulation of endogeneity (Assumption 6) and the network of social interactions (Theorem 1) are quite general and can accommodate a wide variety of settings. Our key assumptions are two: first, that the error term is mean-independent of the key topological structures (Assumption 7); second, that the researchers know the characteristics matrices \mathbf{C}_{k} up to ξ_{k} for $k=1, \ldots, K$. Exogeneity of the network is a standard condition in this literature; as argued, while in future work this assumption shall be relaxed, in this paper it allows us to focus on our "spatial" endogeneity mechanism. Conversely, information about the characteristic structures for each covariate may be difficult to obtain in empirical applications; while it is not required that the intensity of endogeneity is known (the ξ_{k} parameters are identified and can be estimated) lack of knowledge about its spatial structure can lead to misspecification. In such cases, we advocate using our approach as a testing

[^16]tool (for example, as part of robustness checks) to verify that the results are not driven by the spatial cross-correlation between observed and unobserved characteristics. We illustrate our approach in our empirical application, where conventional estimators deliver statistically significant social effects, but we are concerned whether these are driven by some instance of correlated effects.

3.3 Extensions

Finally, we analyze two simple extensions of our framework. First, we show how it can accommodate multiple networks and the relative fixed effects. Next, we discuss how the primitive parameters μ and v from our analytical framework, which are combined in β, can be identified under certain conditions.

Network-level fixed effects

The use of the third power of \mathbf{G} bears some analogies with the scenario analyzed by Bramoullé et al. (2009), where the adjacency matrix represents a set of disconnected networks, to each of which is associated a separate fixed effect, and where the use of indirect connections of third degree is necessary once such fixed effects are partialled out. The difference is that here, it is necessary to remove the endogenous component expressed in (22) too. The following corollary is consequent to this observation.

Corollary 1. If the model of interest is:

$$
\begin{equation*}
\mathbf{y}=\mathbf{D} \boldsymbol{\alpha}^{*}+\beta \mathbf{G} \mathbf{y}+\mathbf{X} \boldsymbol{\gamma}+\mathbf{G X} \boldsymbol{\delta}+\boldsymbol{\varepsilon}, \tag{27}
\end{equation*}
$$

where \mathbf{D} represents a set of D dummy variables, each for a separate component of the network \mathcal{G}, and $\boldsymbol{\alpha}^{*}=\left(\alpha_{1}, \ldots, \alpha_{D}\right)$ is a vector of associated fixed effects, the parameters $\boldsymbol{\theta} \equiv\left(\boldsymbol{\alpha}^{*}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\delta}, \boldsymbol{\xi}, \boldsymbol{\Phi}, \boldsymbol{\Psi}, \sigma^{2}\right)$ are identified if, in addition to the conditions expressed in Theorem 1, also matrix \mathbf{G}^{4} is linearly independent of matrices $\mathbf{I}, \mathbf{G}, \mathbf{G}^{2}$ and \mathbf{G}^{3}. Proof. This follows straightforwardly from "network differencing" equation (27) by pre-multiplying the data (\mathbf{X}, \mathbf{y}) by $\mathbf{I}-\mathbf{G}$ as in Bramoullé et al. (2009). The identification of the differenced model would follow as per our previous analysis with $\alpha=0$; the resulting moments are a function of \mathbf{G}^{4} which thus must be linearly independent of its lower powers. The fixed effects $\boldsymbol{\alpha}^{*}$ are residually identified as a subnetwork-specific set of intercepts.

Under this approach, also the error term is transformed as $(\mathbf{I}-\mathbf{G}) \boldsymbol{\varepsilon}$. This poses no problems to identification and estimation, as the terms $\lambda_{q k}$ in (25) and λ_{p} in (26) can still be calculated, their expressions incorporating the transformation matrix $(\mathbf{I}-\mathbf{G})$.

Identification of μ and ν

In our framework, parameter β represents a composite equilibrium effect: it encloses the direct effect of peers' effort, v, amplified by the equilibrium response of individual effort, $(1-\mu)^{-1}$. Because of Assumption 3 (row-normalization of \mathbf{G}) the two parameters μ and ν disappear from the reduced form equilibrium equation. However, note that when this hypothesis is dropped, under our framework (11) becomes:

$$
\begin{equation*}
\mathbf{y}=(\alpha-\zeta) \iota+\beta \mathbf{G} \mathbf{y}+\gamma \mathbf{x}+\zeta \overline{\mathbf{g}}+\varepsilon \tag{28}
\end{equation*}
$$

where $\zeta \equiv(1-\mu)^{-1} \nu \log \mu$ and $\overline{\mathbf{g}} \equiv \mathbf{G}$ t is the vector of individual in-degrees (the overall strength of all one individual's connections, such that $\bar{g}_{i}=\sum_{j=1}^{N} g_{i j}$). Since $\exp (\zeta / \beta)=\mu$, if the observable characteristics x_{i} 's and the network \mathcal{G} are exogenous the primitive parameters μ and ν are separately identified in (28). The intuition is straightforward: the variation in individual in-degree $\overline{\mathbf{g}}$ conveys additional information about the overall strength of direct spillovers (expressed by the parameter v). ${ }^{21}$ An individual with more friends or a firm with more connections is likely to enjoy more beneficial externalities. While row-normalization is routinely assumed in studies of peer effects, we find the latter to be a realistic hypothesis. ${ }^{22}$

In our framework, μ and v are separately identified also under a mildly restrictive instance of endogeneity.

Corollary 2. Under the conditions expressed by Theorem 1 but Assumption 3, if $\overline{\mathbf{g}}$ is linearly independent of the unit vector \mathfrak{l} or any other covariate $\mathbf{X}_{\cdot, k}$ and, in addition, $\mathbb{E}\left[\overline{\mathbf{g}}^{\mathrm{T}} \boldsymbol{\varepsilon}\right]=0$ holds, then parameters μ and $\boldsymbol{\nu}$ are separately identified.

Proof. Re-define the residual as $\boldsymbol{\varepsilon}(\boldsymbol{\theta}, \zeta)=\mathbf{y}-(\alpha-\zeta) \iota-\beta \mathbf{G y}-\mathbf{X} \boldsymbol{\gamma}-\mathbf{G X} \boldsymbol{\delta}-\zeta \overline{\mathbf{g}}$, and add $\mathbb{E}\left[\overline{\mathbf{g}}^{\mathrm{T}} \boldsymbol{\varepsilon}(\boldsymbol{\theta}, \zeta)\right]=0$ to the moments from the proof of Theorem 1 . One can verify that this does not affect the rank properties of the matrices examined therein.

[^17]Essentially, if the observable characteristics are endogenous as per Assumption 6, but the intensity of individual connections is independent of individual unobservables, μ and v can be separately identified by adding the additional regressor \bar{g}_{i}. Note that some form of statistical dependence of the adjacency matrix \mathbf{G} on the characteristics matrices \mathbf{C}_{k} is still allowed. Scenarios where the identifying assumption is violated are obvious: for example, a very skilled pupil or a very successful firm may find themselves with more (or more intense) connections. In future work, we plan to examine under what conditions can μ and ν be separately identified even if that hypothesis fails.

4 Estimation

The moment conditions that support our main identification results lend themselves naturally to GMM estimation. In this section we describe how the estimation framework introduced by Lee (2007a) can be adapted to our assumed forms of endogeneity. In doing so, we specialize - as mentioned earlier - to a simple stochastic process that governs our the error term: a spatial moving average of first degree. This facilitates the asymptotic analysis, yet the results can be extended to any SARMA process.

Assumption 8. SMA(1) Unobservables: $\boldsymbol{\phi}=\mathbf{0}$ and $\psi_{m}=0$ for $m \geq 2$.
In what follows, we write $\boldsymbol{\psi}=\psi_{1}$ and $\boldsymbol{\theta}=\left(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\delta}, \boldsymbol{\xi}, \boldsymbol{\psi}, \sigma^{2}\right)$. We also denote the true parameter values as $\boldsymbol{\theta}_{0}$, we introduce N subscripts, and we define the following matrices for $q=1, \ldots, Q$:

$$
\mathbf{Q}_{q, N} \equiv \mathbf{X}_{N}^{\mathrm{T}} \mathbf{G}_{N}^{q-1}
$$

Our GMM estimator is based on a set of $1+Q K+P$ moments conditions, with $Q \geq 4$ and $P \geq 2$, that explicitly correct the bias of conventional moments: ${ }^{23}$

$$
\begin{equation*}
\mathbb{E}\left[\mathbf{m}_{N}\left(\boldsymbol{\theta}_{0}\right)-\boldsymbol{\lambda}_{N}\left(\boldsymbol{\theta}_{0}\right)\right]=\mathbf{0} . \tag{29}
\end{equation*}
$$

To better describe our moment conditions, express the structural residual as:

$$
\varepsilon_{N}(\boldsymbol{\theta})=\mathbf{y}_{N}-\alpha \mathbf{l}_{N}-\beta \mathbf{G}_{N} \mathbf{y}_{N}-\mathbf{X}_{N} \boldsymbol{\gamma}-\mathbf{G}_{N} \mathbf{X}_{N} \boldsymbol{\delta}
$$

[^18]hence, it is:
\[

\mathbf{m}_{N}(\boldsymbol{\theta})=\left[$$
\begin{array}{llllll}
\mathfrak{l}^{\mathrm{T}} \varepsilon_{N}(\boldsymbol{\theta}) & \cdots & \varepsilon_{N}^{\mathrm{T}}(\boldsymbol{\theta}) \mathbf{Q}_{q, N}^{\mathrm{T}} & \cdots & \boldsymbol{\varepsilon}_{N}^{\mathrm{T}}(\boldsymbol{\theta}) \mathbf{P}_{p, N} \boldsymbol{\varepsilon}_{N}(\boldsymbol{\theta}) & \cdots
\end{array}
$$\right]^{\mathrm{T}},
\]

for $q=1, \ldots, Q$ and $p=1, \ldots, P$. As for vector $\boldsymbol{\lambda}_{N}(\boldsymbol{\theta})$, its first element is given by $\lambda_{1, N}(\boldsymbol{\theta})=0$, while the others are:

$$
\lambda_{1+(q-1) K+k, N}(\boldsymbol{\theta}) \equiv \sigma^{2} \xi_{k} \operatorname{Tr}\left[\mathbf{C}_{k, N}^{\mathrm{T}} \mathbf{G}_{N}^{q-1}\left(\mathbf{I}_{N}+\psi \mathbf{E}_{N}\right)\right]
$$

for $q=1, \ldots, Q$ and $k=1, \ldots, K$; and:

$$
\lambda_{1+Q K+p, N}(\boldsymbol{\theta}) \equiv \sigma^{2} \operatorname{Tr}\left[\left(\mathbf{I}_{N}+\psi \mathbf{E}_{N}\right)^{\mathrm{T}} \mathbf{P}_{p, N}\left(\mathbf{I}_{N}+\psi \mathbf{E}_{N}\right)\right]
$$

for $p=1, \ldots, P$. For some $\boldsymbol{\theta}$, the sample moments are, simply:

$$
\begin{equation*}
\overline{\mathbf{m}}_{N}(\boldsymbol{\theta}) \equiv \frac{1}{N}\left[\mathbf{m}_{N}(\boldsymbol{\theta})-\boldsymbol{\lambda}_{N}(\boldsymbol{\theta})\right] \tag{30}
\end{equation*}
$$

while our GMM estimator $\widehat{\boldsymbol{\theta}}_{G M M}$ is the usual minimizer in the parameter space $\boldsymbol{\Theta}$:

$$
\begin{equation*}
\widehat{\boldsymbol{\theta}}_{G M M}=\underset{\boldsymbol{\theta} \in \boldsymbol{\Theta}}{\arg \min } \overline{\mathbf{m}}_{N}^{\mathrm{T}}(\boldsymbol{\theta}) \mathbf{W}_{N} \overline{\mathbf{m}}_{N}(\boldsymbol{\theta}), \tag{31}
\end{equation*}
$$

where \mathbf{W}_{N} is a weighting matrix. We derive the asymptotic properties of the estimator under the following additional assumptions.

Assumption 9. Bounded Parameter Space: $\boldsymbol{\Theta}$ is bounded.
Assumption 10. Probability Limits of the Covariates: the independent component of $x_{i k}$ are such that $N^{-1} \sum_{i=1}^{N}\left(\widetilde{x}_{i k}-\mathbb{E}\left[\widetilde{x}_{i k}\right]\right)=o_{P}(1)$ for all $k=1, \ldots, K$.

Assumptions 9 and 10 are typical regularity conditions that are necessary to ensure consistency of the GMM estimator.

Assumption 11. Bounded Characteristics: matrix $\mathbf{C}_{k, N}$ is bounded by $\bar{C}_{k}<\infty$, that is $\sum_{j=1}^{N} \mathrm{c}_{k, i j}<\bar{C}_{k}$ for $i=1, \ldots, N$, for all $k=1, \ldots, K$.

Assumption 12. Bounded Adjacencies: the network's adjacency matrix \mathbf{G}_{N} and its corresponding Leontiev inverse $\left(\mathbf{I}_{N}-\beta_{0} \mathbf{G}_{N}\right)^{-1}$ are uniformly bounded in both row and column sums in absolute value.

Assumption 13. Bounded Moment Matrices: all the matrices $\left(\mathbf{Q}_{1, N}, \ldots, \mathbf{Q}_{Q, N}\right)$ and $\left(\mathbf{P}_{1, N}, \ldots, \mathbf{P}_{P, N}\right)$ used in the moment conditions are all uniformly bounded in both row and column sums in absolute value.

Assumptions 11-13 all ensure that the moments in question have finite variance. Note that Assumptions 12-13 have their analogues in Lee (2007a), while Assumption 11 is specific to our framework. Also observe that bounded adjacencies are implied by the row normalization of \mathbf{G}_{N}. Yet Assumption 12 may be useful when row normalization is dropped, e.g. if interest falls on the separate identification of μ and ν.

Under the maintained assumptions, one can derive standard asymptotic properties for our GMM estimator. Extending the next result to more general SARMA processes or to heteroscedastic primitive shocks is conceptually straightforward but tedious.

Theorem 2. Asymptotics of the GMM estimator. Under Assumptions 1-13, and holding the identification conditions detailed in Theorem 1, $\widehat{\boldsymbol{\theta}}_{G M M}$ is a consistent estimator of $\boldsymbol{\theta}_{0}$ and has the following limiting distribution:

$$
\sqrt{N}\left(\widehat{\boldsymbol{\theta}}_{G M M}-\boldsymbol{\theta}_{0}\right) \xrightarrow{d} \mathcal{N}\left(\mathbf{0},\left[\mathbf{J}_{0}^{\mathrm{T}} \mathbf{W}_{0} \mathbf{J}_{0}\right]^{-1} \mathbf{J}_{0}^{\mathrm{T}} \mathbf{W}_{0} \mathbf{\Omega}_{0} \mathbf{W}_{0} \mathbf{J}_{0}\left[\mathbf{J}_{0}^{\mathrm{T}} \mathbf{W}_{0} \mathbf{J}_{0}\right]^{-1}\right)
$$

where (i) $\boldsymbol{\Omega}_{0} \equiv \operatorname{plim} \frac{1}{N} \mathbb{V} \operatorname{ar}\left[\boldsymbol{m}_{N}\left(\boldsymbol{\theta}_{0}\right)\right]$, (ii) $\mathbf{J}_{0} \equiv \operatorname{plim} \frac{\partial}{\partial \boldsymbol{\theta}^{\mathrm{T}}} \overline{\mathbf{m}}_{N}\left(\boldsymbol{\theta}_{0}\right)$, (iii) $\mathbf{W}_{0} \equiv \operatorname{plim} \mathbf{W}_{N}$.
Proof. See the Appendix. The proof is based on the results by Lee (2007a), which in turn rely on White (1996) as well as Kelejian and Prucha (2001).

The choice of the optimal weighting matrix \mathbf{W}_{N} is informed by the same considerations advanced by Lee (2007a), to whom we refer for the details (we use a parallel notation for the moment matrices $\mathbf{Q}_{q, N}$ and $\mathbf{P}_{p, N}$ for ease of comparison). However, in general, this GMM estimator is not efficient, as efficiency is also affected by the choice of moments used for estimation. We explore how this affects the finite sample performance of the estimator in the next section. Still, one can construct an asymptotically efficient estimator, as Lee and Liu (2010) did for a spatial autoregression model with exogenous individual characteristics \mathbf{X}. As in the theory of optimal instruments, the moments must be chosen so that the Jacobian of the moment conditions is equal to the inverse of the asymptotic variance. Because the moment functions depend on $\boldsymbol{\theta}$ itself, the computation of such moments requires an initial \sqrt{N}-consistent estimator; thus, an efficient estimator would proceed in two steps. We leave the analysis of such an estimator for future work.

5 Monte Carlo

We evaluate the performance of our GMM estimator across Monte Carlo simulations. These are all based on a minimal data generation process (d.g.p.): the bivariate SAR model (11) without contextual effects, combined with the spatial linear endogeneity specification expressed in (7). We study a number of "experiments," that is groups of simulations, that differ by the type of the characteristic matrix \mathbf{C} used in the d.g.p. to generate the observable characteristic \mathbf{x}. Examples of different such types include the identity matrix, a matrix with a block structure as in the example from Graph 1, or functions of a network to which all simulated observations belong. To minimize the dependence of our results from specific topologies, in all the simulations or repetitions of an experiment, we generate a new network adjacency matrix \mathbf{G}; we do the same for characteristic structures \mathbf{C} with possibly irregular types, e.g. the network functions. More specifically, all G matrices are randomly generated through the "small-world" algorithm by Watts and Strogatz (1998) with constant parameters. ${ }^{24}$ We also let the error term follow a simple first order spatial moving average process as per Assumption 8, and we set $\mathbf{E}=\mathbf{G}$, i.e. the $\operatorname{SMA}(1)$ process is governed by the network.

The following expression for the simulated values of \mathbf{y} summarizes our d.g.p.:

$$
\mathbf{y}=(\mathbf{I}-\beta \mathbf{G})^{-1}\left[\alpha \mathbf{\imath}+\gamma\left(\widetilde{\mathbf{x}}+\xi \sigma \mathbf{C} \boldsymbol{v}_{\boldsymbol{y}}\right)+\chi \mathbf{w}+\sigma(\mathbf{I}+\psi \mathbf{G}) \boldsymbol{v}_{\boldsymbol{y}}\right]
$$

where \mathbf{w} is a vector of N independent draws from the continuous uniform distribution with support on $(0,1)$, which we leverage to compare the performance of our estimator against one based on "external instruments;" χ is a real parameter; $\boldsymbol{v}_{\boldsymbol{y}}$ is a vector of N independent draws from a standard normal distribution; while $\widetilde{\mathbf{x}}$ is generated as:

$$
\widetilde{\mathbf{x}}=0.3 \cdot \mathbf{H} \boldsymbol{v}_{\boldsymbol{x}}
$$

where $\boldsymbol{v}_{\boldsymbol{x}}$ are yet N more independent draws from the standard normal distribution,

[^19]and \mathbf{H} is an $N \times N$ matrix that can introduce spatial correlation in the independent component of \mathbf{x}. Like \mathbf{C}, the type of matrix \mathbf{H} is fixed within an experiment but the actual topology can vary across repetitions. In all our simulations we set $N=500$.

In every experiment, we compare eight estimators against one another. The first four estimators are variations of our proposed GMM estimator, that are summarized as follows; (1) a version based on a smaller set of moments, $Q=3$ and $P=2$, where $\mathbf{P}_{1}=\mathbf{I}$ and $\mathbf{P}_{1}=\mathbf{G}$; (2) a version with more moments, $Q=4$ and $P=3$, where \mathbf{P}_{1} and \mathbf{P}_{2} are as before and in addition, $\mathbf{P}_{3}=\mathbf{G}^{2} ;(3)$ a version with an even larger set of moments, $Q=5$ and $P=4$, with additionally $\mathbf{P}_{4}=\mathbf{G}^{3}$; (4) a version like the latter, but where estimation is based on a "misspecified" characteristic matrix \mathbf{C}_{e}, as detailed later. All four GMM estimators return estimates for $(\alpha, \beta, \gamma, \chi, \xi, \psi, \sigma)$. The other four estimators are a naïve OLS estimator which takes $\mathbf{G y}, \mathbf{x}$ and \mathbf{w} as independent variables, and three different 2SLS estimators based on the following set of instruments:

$$
\mathrm{Z} \equiv\left[\begin{array}{lllll}
\iota & \mathrm{w} & \mathrm{z} & \mathrm{Gz} & \mathrm{G}^{2} \mathrm{z} \tag{32}
\end{array}\right]
$$

In (32), it is either (a) $\mathbf{z}=\mathbf{x}$, yielding an 2SLS estimator akin to the one proposed by Bramoullé et al. (2009); (b) $\mathbf{z}=\mathbf{G w}$, yielding a 2SLS estimator solely based on the exogenous regressor and its spatial lags; or $(c) \mathbf{z}=\mathbf{B x}$, where \mathbf{B} is a matrix such that $\mathbf{B C}=\mathbf{0}$ as per the discussion in Section 3.1, yielding a consistent 2SLS estimator based on transformations of \mathbf{x} that are purged of the endogenous component. ${ }^{25}$ Thus, we compare our GMM estimator to several simpler alternatives that are likely to occur in the empirical practice. These simpler estimators return estimates for $(\alpha, \beta, \gamma, \chi)$.

We summarize the results of our simulated estimates in Tables 1 and 2. For every experiment-estimator combination, we report the median and - in parentheses - the standard deviation of point estimates for the estimated parameters of interest across 1,000 repetitions. We first describe Experiment 1 from Table 1, our "baseline" case, in depth. In all its repetitions, we set $\mathbf{H}=\mathbf{I}+\mathbf{G}$ (hence the independent component of \mathbf{x} displays cross-correlation) and \mathbf{C} is similarly constructed, but instead of \mathbf{G}, we add to the identity matrix a different matrix derived from a "small world algorithm" as per footnote 24. Because of how that algorithm works, \mathbf{H} and \mathbf{C} are correlated, though distinct. The three GMM estimators that are based on a correctly specified matrix \mathbf{C}, as expected, all display a good performance at estimating the real parameters set

[^20]Table 1: Monte Carlo Simulations (part one)

Experiment 2: $\mathbf{H}=\mathbf{I}+\mathbf{G}, \mathbf{C}=\mathbf{I}+\mathbf{G}, \mathbf{C}=\mathbf{I}+\mathbf{G}+\mathbf{G}^{2}$							
GMM1	GMM2	GMM3	GMM4	OLS	2 2SLSa	2 2SLSb	2SLSc
0.296	0.248	0.249	0.206	0.231	0.190	0.251	0.300
(0.674)	(0.036)	(0.037)	(0.056)	(0.010)	(0.051)	(0.032)	(0.649)
0.361	0.402	0.401	0.437	0.417	0.453	0.399	0.358
(0.579)	(0.030)	(0.031)	(0.047)	(0.008)	(0.045)	(0.023)	(0.485)
0.527	0.490	0.492	0.493	0.586	0.564	0.576	0.778
(0.372)	(0.031)	(0.029)	(0.085)	(0.011)	(0.028)	(0.368)	(8.095)
1.006	0.999	0.999	0.995	0.996	0.989	1.000	0.998
(0.121)	(0.009)	(0.009)	(0.013)	(0.007)	(0.014)	(0.014)	(0.132)
0.184	0.204	0.202	0.072	-	-	-	-
(0.058)	(0.038)	(0.036)	(0.059)			-	-
0.259	0.266	0.262	0.207	-	-	-	-
(0.083)	(0.072)	(0.068)	(0.137)				-
0.058	0.051	0.051	0.051	-	-	-	-
(0.150)	(0.003)	(0.003)	(0.006)				

Experiment 4: $\mathbf{H}=\mathbf{I}+\mathbf{G}, \mathbf{C}:$ groups of size $10, \mathbf{C}_{e}: \mathbf{C}$'s groups split in half							
GMM1	GMM2	GMM3	GMM4	OLS	2SLSa	2SLSb	2SLSc
0.264	0.246	0.246	0.241	0.228	0.226	0.249	0.237
(0.132)	(0.037)	(0.038)	(0.038)	(0.012)	(0.042)	(0.032)	(0.047)
0.391	0.403	0.404	0.408	0.420	0.421	0.401	0.411
(0.099)	(0.031)	(0.032)	(0.032)	(0.009)	(0.037)	(0.023)	(0.041)
0.493	0.503	0.501	0.487	0.522	0.520	0.525	0.495
(0.086)	(0.048)	(0.053)	(0.063)	(0.015)	(0.023)	(0.488)	(0.023)
0.996	0.999	0.999	0.998	0.996	0.995	1.000	0.998
(0.021)	(0.008)	(0.009)	(0.010)	(0.008)	(0.011)	(0.015)	(0.012)
0.240	0.216	0.230	0.574	-	-	-	-
(0.361)	(0.211)	(0.223)	(0.527)				
0.279	0.249	0.251	0.253	-	-	-	-
(0.101)	(0.058)	(0.061)	(0.061)				
0.055	0.050	0.051	0.051	-	-	-	-
(0.022)	(0.002)	(0.003)	(0.003)				

Target
Parameter
 $x=1.00$

Target
Parameter
$\alpha=0.25$
$\beta=0.40$
$\gamma=0.50$
$\chi=1.00$
$\xi=0.20$
$\psi=0.25$
$\sigma=0.05$

Target
Parameter

Notes. For every experiment-estimator combination, each column in this table reports the median and the standard deviation (in parentheses) of the relevant point estimates across 1,000 repetitions, all with $N=500$. Each experiment is characterized by a combination of $\left(\mathbf{H}, \mathbf{C}, \mathbf{C} \mathbf{C}_{e}\right)$, as summarized by the corresponding headers. OLS is self-explanatory; 2SLSa: $\mathbf{z}=\mathbf{x} ; 2 \mathrm{SLSb}: \mathbf{z}=\mathbf{G w} ; 2 \mathrm{SLSc}: \mathbf{z}=\mathbf{B X}$. See the text for additional details.
Table 2: Monte Carlo Simulations (part two)

Experiment 8: as in experiment 1, Table 1, but with lower γ							
GMM1	GMM2	GMM3	GMM4	OLS	2SLSa	2SLSb	2SLSc
0.262	0.252	0.253	0.259	0.233	0.253	0.249	0.237
(0.108)	(0.040)	(0.044)	(0.040)	(0.011)	(0.102)	(0.073)	(0.438)
0.392	0.399	0.398	0.393	0.415	0.397	0.400	0.411
(0.087)	(0.033)	(0.037)	(0.033)	(0.009)	(0.089)	(0.037)	(0.379)
0.198	0.187	0.189	0.233	0.283	0.289	0.285	0.184
(0.053)	(0.044)	(0.043)	(0.036)	(0.012)	(0.023)	(0.656)	(0.617)
0.996	0.999	0.999	1.000	0.997	1.000	1.000	0.999
(0.014)	(0.008)	(0.011)	(0.008)	(0.007)	(0.021)	(0.013)	(0.089)
0.184	0.213	0.211	0.108	-	-	-	-
(0.093)	(0.079)	(0.078)	(0.071)				-
0.267	0.267	0.266	0.225	-	-	-	-
(0.100)	(0.070)	(0.073)	(0.071)				-
0.054	0.052	0.052	0.049	-	-	-	-
(0.011)	(0.004)	(0.004)	(0.003)				

Experiment 10: as in experiment 1, Table 1, but with $\psi=0$ (i.i.d. errors)							
GMM1	GMM2	GMM3	GMM4	OLS	2SLSa	2SLSb	2SLSc
0.266	0.255	0.255	0.269	0.247	0.273	0.255	0.253
(0.051)	(0.032)	(0.032)	(0.028)	(0.010)	(0.032)	(0.134)	(0.359)
0.387	0.396	0.395	0.383	0.403	0.380	0.398	0.397
(0.043)	(0.028)	(0.027)	(0.024)	(0.008)	(0.028)	(0.058)	(0.314)
0.490	0.475	0.478	0.524	0.575	0.587	0.533	0.481
(0.061)	(0.062)	(0.056)	(0.042)	(0.011)	(0.018)	(1.056)	(0.677)
1.001	1.000	1.000	1.003	0.999	1.004	1.000	1.002
(0.010)	(0.010)	(0.009)	(0.008)	(0.007)	(0.010)	(0.017)	(0.085)
0.217	0.236	0.234	0.135	-	-	-	-
(0.101)	(0.103)	(0.097)	(0.080)				
0.082	0.083	0.079	0.055	-	-	-	-
(0.091)	(0.078)	(0.076)	(0.073)				-
0.053	0.053	0.053	0.050	-	-	-	-
(0.006)	(0.006)	(0.005)	(0.004)				

Experiment 9: as in experiment 1, Table 1, but with $\xi=0$ (no endogeneity)							
GMM1	GMM2	GMM3	GMM4	OLS	2SLSa	2SLSb	2SLSc
0.245	0.246	0.247	0.252	0.228	0.251	0.249	0.246
(0.069)	(0.037)	(0.040)	(0.045)	(0.012)	(0.048)	(0.030)	(0.398)
0.405	0.403	0.402	0.399	0.419	0.399	0.401	0.403
(0.059)	(0.030)	(0.033)	(0.037)	(0.009)	(0.042)	(0.020)	(0.347)
0.499	0.498	0.497	0.498	0.490	0.500	0.486	0.528
(0.079)	(0.062)	(0.060)	(0.030)	(0.015)	(0.023)	(0.514)	(0.528)
0.998	0.999	0.999	0.999	0.996	1.000	1.000	1.000
(0.014)	(0.007)	(0.008)	(0.008)	(0.007)	(0.012)	(0.014)	(0.077)
0.041	0.051	0.049	0.016	-	-	-	-
(0.091)	(0.068)	(0.067)	(0.033)				-
0.262	0.255	0.253	0.250	-	-	-	-
(0.068)	(0.049)	(0.054)	(0.056)				-
0.052	0.051	0.051	0.051	-	-	-	-
(0.006)	(0.002)	(0.002)	(0.002)				

Target
Parameter
Parameter
$\alpha=0.25$

Experiment 12: $\mathbf{H}=2(\mathbf{I}+\mathbf{G}), \mathbf{C}=\mathbf{I}+$ a different small world, $\mathbf{C}_{e}=\mathbf{I}+\mathbf{G}$							
GMM1	GMM2	GMM3	GMM4	OLS	2SLSa	2SLSb	2SLSc
0.225	0.234	0.238	0.237	0.241	0.322	0.251	0.246
(0.093)	(0.056)	(0.056)	(0.055)	(0.011)	(0.030)	(0.030)	(0.425)
0.423	0.415	0.412	0.413	0.407	0.337	0.399	0.403
(0.079)	(0.049)	(0.048)	(0.050)	(0.008)	(0.026)	(0.022)	(0.378)
0.470	0.479	0.478	0.538	0.574	0.601	0.564	0.494
(0.096)	(0.062)	(0.062)	(0.067)	(0.012)	(0.013)	(0.400)	(0.300)
0.992	0.995	0.995	0.993	0.999	1.013	0.999	1.000
(0.018)	(0.016)	(0.015)	(0.020)	(0.007)	(0.010)	(0.015)	(0.076)
0.209	0.212	0.216	0.085	-	-	-	-
(0.095)	(0.088)	(0.091)	(0.081)				
0.217	0.218	0.223	0.252	-	-	-	-
(0.124)	(0.106)	(0.106)	(0.123)				
0.056	0.053	0.053	0.050	-	-	-	-
(0.016)	(0.008)	(0.008)	(0.007)				

Target
Parameter
$\alpha=0.25$
$\beta=0.40$
$\gamma=0.50$
$\chi=1.00$
$\xi=0.20$
$\psi=0.25$
$\sigma=0.05$

Experiment 11: as in experiment 1, Table 1, but with higher σ							
GMM1	GMM2	GMM3	GMM4	OLS	2SLSa	2SLSb	2SLSc
0.250	0.248	0.249	0.256	0.195	0.250	0.250	0.201
(0.107)	(0.066)	(0.069)	(0.060)	(0.021)	(0.052)	(0.074)	(1.066)
0.402	0.403	0.402	0.395	0.449	0.400	0.399	0.436
(0.091)	(0.056)	(0.059)	(0.050)	(0.016)	(0.045)	(0.049)	(0.852)
0.481	0.471	0.471	0.578	0.644	0.674	0.657	0.260
(0.114)	(0.095)	(0.092)	(0.060)	(0.024)	(0.033)	(0.842)	(7.352)
0.995	0.997	0.997	0.998	0.989	1.000	1.001	1.011
(0.022)	(0.018)	(0.019)	(0.015)	(0.014)	(0.018)	(0.024)	(0.542)
0.202	0.214	0.214	0.096	-	-	-	-
(0.089)	(0.082)	(0.084)	(0.063)				-
0.265	0.264	0.264	0.216	-	-	-	-
(0.106)	(0.086)	(0.088)	(0.079)			-	-
0.104	0.103	0.103	0.097	-	-	-	
(0.011)	(0.008)	(0.008)	(0.005)				

Target
Parameter
$\alpha=0.25$
$\beta=0.40$
$\gamma=0.50$
$\chi=1.00$
$\xi=0.20$
$\psi=0.25$
$\sigma=0.10$

Notes. For every experiment-estimator combination, each column in this table reports the median and the standard deviation (in parentheses) of the relevant point estimates across 1,000 repetitions, all with $N=500$. Each experiment is characterized by a combination of $\left(\mathbf{H}, \mathbf{C}, \mathbf{C}_{e}\right)$, as summarized by the corresponding headers. The estimators are as follows. GMM1: $Q=3, P=2, \mathbf{C}_{e}=\mathbf{C} ; \mathbf{G M M 2 :} Q=4, P=3, \mathbf{C}_{e} \neq \mathbf{C}$; GMM3: Q
OLS is self-explanatory; $2 \mathrm{SLSa}: \mathbf{z}=\mathbf{x} ; 2 \mathrm{SLSb}: \mathbf{z}=\mathbf{G w} ; 2 \mathrm{SLSc}: \mathbf{z}=\mathbf{B X}$. See the text for additional details
of the d.g.p., which are reported in the table. The number of instruments being used does not appear too consequential. It is interesting to examine the estimates based on a misspecified matrix \mathbf{C}_{e} ("GMM4"), which in the baseline case we set as equal to $\mathbf{C}_{e}=\mathbf{I}+\mathbf{G}=\mathbf{H}$: this introduces a bias in our estimates, but not a particularly pronounced one for the main parameters of interests β and γ (unlike the endogeneity parameter ξ, for which the bias is more pronounced). More conventional estimators all deliver biased estimates for either β or γ, or both, that are comparable to those obtained from the misspecified GMM. ${ }^{26}$ In the case of the third 2SLS estimator (with $\mathbf{z}=\mathbf{B x}$), the bias seems coupled with an exceedingly large variability of the estimates: as hinted in Section 2.3, the transformation implied by B is bound to remove much of the independent variable's variation, which in turn is likely to exacerbate the bias of the GMM estimator in small samples.

Experiments 2 through 6 from Table 1 are analogous to the baseline case. All of them are characterized by different combinations of matrices \mathbf{H} and \mathbf{C}, which may include functions of \mathbf{G}^{2} or matrices representing "fully segregated" group structures as per the discussion in Section 2.3 and the representation of Graph 1 (in this case, all connections in a group are equally weighted). When we perform GMM estimates with a misspecified matrix \mathbf{C}_{e}, the latter is typically chosen so as to be fairly, but not overly similar to the true \mathbf{C}; for example, if \mathbf{C} has a group structure, \mathbf{C}_{e} is obtained by splitting the original groups in half. The results are qualitatively very similar to the baseline case. The main difference is that when \mathbf{C} has a group structure, the third 2SLS estimator with $\mathbf{z}=\mathbf{B x}$ performs much better, as the implied transformation is akin to the conventional within-transformation for panel data. ${ }^{27}$ Table 2 shows the results from additional simulations, all built around the baseline: Experiments 7 and 8 attempt alternative values for β and γ, respectively; Experiments 9 and 10 shut down the entire endogeneity channel $(\xi=0)$ or the error terms' $\operatorname{SMA}(1)$ process $(\psi=0)$, respectively; lastly, Experiments 11 and 12 increase the variance of two key elements of the d.g.p.: the error term and the independent component of \mathbf{x}, respectively. The interpretation of all those results is the same as in the baseline case.

[^21]In summary, the GMM estimator that we propose appears to perform well, and while it has demanding requirements (mainly the knowledge of the true characteristic matrix C), departures from the ideal scenario - such as the misspecified estimates that we examine - do not seem to yield worse estimates than those obtained from more conventional estimators; in some cases the estimates for the main parameter of interest β are very similar to those obtained via exogenous instruments, which may also be hard to obtain. With the exception of the quite regular case where \mathbf{C} has a fully segregated group structure, transformations of the data that purge the endogenous component of \mathbf{x} do not seem to be a viable alternative. All these considerations make a case in favor of our proposed estimator in the applied econometric practice. ${ }^{28}$

6 Empirical Application

To illustrate how our proposed method can help account for correlated effects in an actual empirical study about social effects, we leverage both the setting and data from the influential study by De Giorgi et al. (2010), which provides estimates about peer effects in major choice between students who started their undergraduate studies at Bocconi University in Italy in 1998. ${ }^{29}$ A key feature of this paper is that peer groups are shaped according to a non-overlapping, networked structure of social interactions \mathcal{G} that is determined exogenously. Specifically, students from different undergraduate programs at Bocconi University used to take common foundational courses over their first year and a half of studies; there were multiple, parallel versions of each common course, and freshmen were randomly allocated into them. In the original paper, the authors defined two students as "peers" if they had been classmates in a given number of common courses out of seven, with the idea that the bonds established by students over their first semesters of study would affect later choices about major. ${ }^{30}$ We refer to the original paper for a full-fledged description of the setting and data.

[^22]
6.1 Specification and summary statistics

We estimate an augmented version of the SAR model (11) on the data provided by De Giorgi et al. (2010), using the same (row-normalized) adjacency matrix G from their favorite specification of the network structure, where two students are defined as "peers" if they attended together at least four common courses. However, our revisited analysis differs from the original in two main respects. First, we examine two, rather than one outcomes of interest y_{i}. In the original paper, y_{i} is a dummy variable that denotes major choice (Economics vs. Business): hence, it contradicts the assumptions about the error term maintained in our linear framework. Thus, we largely focus on a different, yet interesting per se outcome variable that we write as $y_{i}^{(1)}$, that is measured on a more continuous scale: the later Bocconi GPA ${ }^{31}$ that excludes the initial common courses. For the sake of comparison, we also report results that use the original binary outcome, that we write as $y_{i}^{(2)}$. Second, we leverage a specific right-hand side variable x_{i} to construct identifying moment conditions for different estimators: i.e. the grade received by students in high school final exams. ${ }^{32}$ This variable has strong predictive power towards both outcomes y_{i}, but we suspect it to be endogenous. Third, in most specifications we omit contextual or "exogenous" effects, as we find that they typically lead to noisier estimates that complicate comparisons across methods.

Our econometric specification is summarized as follows, for $o=1,2$:

$$
\begin{equation*}
y_{i}^{(o)}=\beta \sum_{j=1}^{N} g_{i j} y_{i}^{(o)}+\gamma x_{i}+\delta \sum_{j=1}^{N} g_{i j} x_{j}+\sum_{k=1}^{K^{\prime}} \chi_{k} w_{k i}+\varepsilon_{i}, \tag{33}
\end{equation*}
$$

though in most cases we impose the restriction $\delta=0$. The K^{\prime} right-hand side variables $w_{k i}$ in (33) are additional controls that largely overlap with those in the original study: dummies about gender, residence status in Milan, a student's region of origin, type of high school degree (technical school versus academic-oriented "liceo"), and a student's household income being classified in the top bracket. Among all these controls, we pay special attention to the female dummy; we denote the associated parameter by $\chi_{f e}$.

[^23]The original study included some additional variables: more specifically, the logarithm of household income and the Bocconi admission test score. We treated the latter both as candidates for our x_{i} predictor; just like our chosen x_{i} (the high-school grade) they are likely to be endogenous. While experimenting with our proposed GMM approach, however, we found that both candidates typically lead to noisier estimates across all estimators. Since we focused on approaches to address the endogeneity of our favorite predictor x_{i}, we chose for the sake of consistency to omit other potentially endogenous regressors from the right-hand side of (33) across all specifications we discuss next. ${ }^{33}$ We provide some key summary statistics in Table 3; we refer to the original study for more extensive data description and additional statistics.

Table 3: Main variables of interest: summary statistics

	$\mathbf{y}^{(1)}$	$\mathbf{G y}^{(1)}$	$\mathbf{y}^{(2)}$	$\mathbf{G y}^{(2)}$	\mathbf{x}	$\mathbf{G x}$	$\mathbf{w}_{f e}$
Mean	26.752	26.755	0.127	0.129	0.863	0.864	0.396
(St. dev.)	(2.049)	(0.522)	(0.333)	(0.088)	(0.112)	(0.027)	(0.489)

Notes. This table reports the mean and the standard deviation of key variables, denoted in the column headers by their corresponding compact notation (e.g., \mathbf{x} is the vector of x_{i} observations; $\mathbf{w}_{f e}$ is the vector of female dummies). Across all calculations the sample size equals $N=1,141$. St. dev.: standard deviation.

While we believe that our chosen x_{i} variable is representative of a student's prior educational achievements or background, as hinted we suspect it to be endogenous. In fact, it is likely to depend upon the unobserved individual ability or motivation, as encoded in the error term ε_{i}, that also affect the outcomes y_{i}. This would not affect the identification of social effects if such unobserved components were independent across students. However, there are reasons to suspect the existence of a spatial correlation between the error terms of different students which occurs along geographical lines. Note that Bocconi is a prestigious university within Italy, certainly not a cheap one to attend by national standards; ${ }^{34}$ while located in Milan in Lombardy, about half of its student body hails from outside that region. For such students the cost of attending

[^24]Bocconi is higher in comparative terms; thus, they are likely to be representative of a relatively more (self-)selected subset of the population of potential students. This may be especially salient for those students coming from those central and southern regions of Italy (about one fourth of our sample) with a markedly lower income per capita and higher overall costs for attending Bocconi.

In light of these observations, we model endogeneity similarly to (10):

$$
\begin{equation*}
x_{i}=\widetilde{x}_{i}+\xi \varepsilon_{i}, \tag{34}
\end{equation*}
$$

while introducing cross-correlation in the error term as follows:

$$
\begin{equation*}
\varepsilon_{i}=\sum_{i=1}^{N} c_{i j} v_{i} \tag{35}
\end{equation*}
$$

with $c_{i i}=1$ for $i=1, \ldots, N$. Together, (34) and (35) are combined as a specification of the high-school mark x_{i} that is consistent with Assumption 6 and hence, with our econometric model (the weights $c_{i j}$ are collected in matrix \mathbf{C}). Note that (35) treats the error term as a spatial MA(1) process with a fixed parameter; although we could estimate this parameter through our procedure, we prefer to assume the entire spatial structure of the errors so as to keep the analysis as simple as possible. Specifically, we experiment with two main types of structure, that are defined in terms of the spatial correlation of the error term as expressed by matrices of the $\mathbf{C C}^{\mathrm{T}}$ kind.

1. The first type is based on a distance decay specification as in (8) with $D=1$, i.e. $\operatorname{Cov}\left(\varepsilon_{i}, \varepsilon_{j}\right) \propto N^{-1} \exp \left(-d_{i j}\right)$ for every pair (i, j), where $d_{i j}$ is the distance between the geographical centroids of two students' provinces of origin. ${ }^{35}$ We derive a characteristic matrix consistent with this pattern by eigendecomposing the target variance-covariance matrix. We denote such a matrix by \mathbf{C}_{d}.
2. The second type features "fully segregated group structures" such that:

$$
\mathbb{C o v}\left(\varepsilon_{i}, \varepsilon_{j}\right) \propto h(|\mathcal{H}(i)|) \cdot \mathbb{1}[j \in \mathcal{H}(i)]
$$

where $\mathcal{H}(i)$ denotes a specific geographical area that student i belongs to, while $h(\cdot)$ is a function that is decreasing in its argument $|\mathcal{H}(i)|$, defined as the size

[^25]of group $\mathcal{H}(i)$ in the data. This is achieved by specifying characteristic matrices featuring $c_{i i}=1$ and $c_{i j}=|\mathcal{H}(i)|^{-1} \mathbb{1}[j \in \mathcal{H}(i)]$ for every pair (i, j). We denote such matrices (we work with two of them) by $\mathbf{C}_{h 1}$ and $\mathbf{C}_{h 2}$.

The second type deserves more discussion. First, we make the covariance decreasing in $|\mathcal{H}(i)|$ as we expect larger groups or areas to be more heterogeneous. Second, note that the definition is silent about what geographical areas encoded in $\mathcal{H}(i)$ are to be employed in the empirical analysis. Thus, we experiment with two definitions, respectively leading to $\mathbf{C}_{h 1}$ and $\mathbf{C}_{h 2}$. The first one is based on those polities that existed in the Italian territory before the historical process of political unification of the Italian peninsula was set in motion in 1859. ${ }^{36}$ The second one one is based upon the classification of Italian provinces by the regional language that is traditionally most widely spoken in the local area. ${ }^{37}$ Both definitions correspond to different groupings of Italian provinces, which often transcend the borders of modern regions. We expect both to capture similarities in history, subculture and economic structure of different provinces or areas. ${ }^{38}$

Some considerations are common across all characteristics matrix that we employ. First, they comply with identification condition (ii) spelled out by Theorem 1. Second, they also comply with Assumption 11, as required for Theorem 2. Third, their entries are fairly comparable in magnitude. Table 4 qualifies these statements quantitatively: it reports, for our three characteristic matrices, the means and the standard deviations of the elements of the diagonal of CG, as well as of the entries of either triangle of $\mathbf{C C}{ }^{\mathrm{T}}$. The former verifies that condition (ii) of Theorem 1 holds in our setting. The latter, in conjunction with our estimates of parameters ξ and σ^{2}, allow to evaluate the patterns of spatial correlation as implied by a given structure. While none of the characteristic matrices that we use is likely to capture the true spatial correlation, we expect them all to approximate it to some degree.

[^26]Table 4: Characteristic matrices: summary statistics

	Diagonal of CG			Upper/lower triangle of $\mathbf{C C}{ }^{\text {T }}$		
	\mathbf{C}_{d}	$\mathbf{C}_{h 1}$	$\mathbf{C}_{h 2}$	\mathbf{C}_{d}	$\mathbf{C}_{h 1}$	$\mathbf{C}_{h 2}$
Mean	0.0001	0.0009	0.0009	0.0006	0.0026	0.0026
(St. dev.)	(0.0078)	(0.0006)	(0.0008)	(0.0002)	(0.0066)	(0.0072)
Obs.	$N=1,141$			$N(N-1) / 2=650,370$		

Notes. This table reports, for the three definitions of \mathbf{C} used in the analysis that are indicated in each column header, the mean and the standard deviation of the N elements of the diagonal of CG (left panel), or of the $N(N-1) / 2$ elements of either the lower or the upper triangle, diagonal excluded, of $\mathbf{C C}^{\mathrm{T}}$ (right panel). St. dev.: standard deviation; Obs.: observations.

Before proceeding to our estimation results, it is worthwhile to discuss the raw patterns of spatial correlation in the data. Specifically, we calculate a set of Moran's I statistics of spatial correlation, along with their associated standard errors (Kelejian and Prucha, 2001), for both outcome variables y_{i}, and our key regressor x_{i}, as implied by the pattern of spatial correlation $\mathbf{C C}^{\mathrm{T}}$ that obtains from our three characteristic matrices we defined. In addition, we calculate Moran's I statistic defined in terms of matrices \mathbf{G} and \mathbf{G}^{2}. All these calculations are reported in Table 5: two observations are in order. First, all Moran's I statistics based on the three characteristic matrices are positive and statistically significant, while the values associated with the regressor x_{i} is typically 4-6 times larger in magnitude than the corresponding values for the outcomes y_{i} (as one would expect if the components of the variance of y_{i} other than x_{i} and ε_{i} featured no spatial correlation). This suggests that the \mathbf{C} matrices may be capturing some relevant spatial correlation. Second, the Moran's I statistics based on \mathbf{G} are much noisier, as one would expect if \mathbf{G} is random. Notably, the ones calculated for the key regressor x_{i} are actually negative, with two-tailed p-values around 0.096 . This suggests that there may be sources of negative spatial correlation in the data, for example in the independent component \widetilde{x}_{i} of the regressors.

6.2 Empirical estimates

We now turn our attention to different set of estimates of model (33), obtained through different approaches. We begin by reviewing estimates based on conventional methods: OLS and IV/2SLS estimators, that are collected in Table 6. The first panel of the table, in particular, reports results for the $y_{i}^{(1)}$ outcome: the later Bocconi GPA.

Table 5: Moran's I Statistics

Variable	$\mathbf{C}_{d} \mathbf{C}_{d}^{\mathrm{T}}$	$\mathbf{C}_{h 1} \mathbf{C}_{h 1}^{\mathrm{T}}$	$\mathbf{C}_{h 2} \mathbf{C}_{h 2}^{\mathrm{T}}$	\mathbf{G}	\mathbf{G}^{2}
\mathbf{y}^{1}	0.0054	0.0395	0.0434	0.0094	-0.0007
	(0.0003)	(0.0032)	(0.0034)	(0.0104)	(0.0043)
\mathbf{y}^{2}	0.0059	0.0240	0.0234	0.0100	0.0042
	(0.0003)	(0.0032)	(0.0034)	(0.0104)	(0.0043)
\mathbf{x}	0.0247	0.1320	0.1192	-0.0174	-0.0074
	(0.0003)	(0.0032)	(0.0034)	(0.0104)	(0.0043)

Notes. This table reports Moran's I statistics, along with their associated standard errors (in parentheses), for all combinations given by the variables indicated in the first column and the matrices listed in the column headers (with diagonal elements uniformly set at zero). Across all calculations the sample size equals $N=1,141$.

Columns (1) provides the baseline OLS estimate, with an associated estimate of social effects in the order of $\widehat{\beta} \simeq 0.1$. Naturally, OLS yields inconsistent estimates of a SAR model by construction, yet these "results" are useful for comparison's sake. Column (2) reports OLS estimates that drop the restriction $\delta=0$, thus introducing exogenous effects into the model. This leads to an updated estimate of social effects with a reverted sign: $\widehat{\beta} \simeq-0.1$ (though it is not statistically significant) and an estimate of the exogenous effect in the order of $\widehat{\delta} \simeq 6.0$, about half the estimate of $\widehat{\gamma}$. Column (3) reports estimates from an extension of the baseline model (without $\delta=0$) that, in an attempt to control for local invariant characteristics, includes fixed effects at the level of Italian provinces (the students' provinces of origin). The resulting estimates are very similar to those from column (2), which suggests that attempts to control for additional factors may push the estimate of β downwards.

Columns (4) through (7) of Table 6 reports IV/2SLS estimates à la Bramoullé et al. (2009) for the $y_{i}^{(1)}$ outcome, using different specification and sets of instruments. Column (4) reports results for the baseline model in the just-identified case, leading to an estimate of social effects in the order of $\widehat{\beta} \simeq 0.3$. This value is higher than the baseline OLS results from column (1), as is typical when correcting for simultaneity biases. Column (5) reports results obtained by adding that feature exogenous effects (identified off farther spatial lags of \mathbf{x}): the estimate of $\widehat{\beta}$ increases even further, but it is no longer statistically significant. Moreover, $\widehat{\delta}$ is also estimated negative and noisy, which suggests (corroborating our wary attitude towards exogenous effects, for the reasons outlined in the discussion of Proposition 3) that not restricting $\delta=0$ is not

Table 6: Empirical estimates: conventional methods

	Outcome variable: $y_{i}^{(1)}$ (later career GPA)						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
β	$\begin{gathered} 0.113 \\ (0.088) \end{gathered}$	$\begin{aligned} & \hline-0.086 \\ & (0.123) \end{aligned}$	$\begin{gathered} -0.082 \\ (0.124) \end{gathered}$	$\begin{gathered} \hline 0.319^{* *} \\ (0.136) \end{gathered}$	$\begin{gathered} 0.571 \\ (0.878) \end{gathered}$	$\begin{gathered} \hline 0.353^{* *} \\ (0.139) \end{gathered}$	$\begin{gathered} 0.131 \\ (0.360) \end{gathered}$
γ	$\begin{gathered} 11.419^{* * *} \\ (0.523) \end{gathered}$	$\begin{gathered} 11.449^{* * *} \\ (0.524) \end{gathered}$	$\begin{gathered} 11.451^{* * *} \\ (0.516) \end{gathered}$	$\begin{gathered} 11.390^{* * *} \\ (0.525) \end{gathered}$	$\begin{gathered} 11.327^{* * *} \\ (0.551) \end{gathered}$	$\begin{gathered} 11.368^{* * *} \\ (0.522) \end{gathered}$	$\begin{gathered} 10.763^{* *} \\ (4.151) \end{gathered}$
δ	-	$\begin{gathered} 5.956 \\ (3.430) \end{gathered}$	-	-	$\begin{gathered} -2.660 \\ (11.546) \end{gathered}$	-	-
$\chi_{f e}$	$\begin{aligned} & 0.229^{* *} \\ & (0.101) \end{aligned}$	$\begin{gathered} 0.228^{* *} \\ (0.101) \end{gathered}$	$\begin{gathered} 0.273^{* * *} \\ (0.101) \end{gathered}$	$\begin{gathered} 0.234^{* *} \\ (0.101) \end{gathered}$	$\begin{gathered} 0.227^{* *} \\ (0.101) \end{gathered}$	$\begin{gathered} 0.273^{* * *} \\ (0.101) \end{gathered}$	$\begin{gathered} 0.262 \\ (0.235) \end{gathered}$
	Outcome variable: $y_{i}^{(2)}$ (economics major choice)						
β	$\begin{gathered} 0.116 \\ (0.105) \end{gathered}$	$\begin{gathered} 0.067 \\ (0.112) \end{gathered}$	$\begin{gathered} 0.074 \\ (0.112) \end{gathered}$	$\begin{gathered} \hline 0.359 \\ (0.448) \end{gathered}$	$\begin{gathered} \hline-3.586 \\ (26.900) \end{gathered}$	$\begin{gathered} 0.115 \\ (0.410) \end{gathered}$	$\begin{gathered} 0.634 \\ (0.496) \end{gathered}$
γ	$\begin{gathered} 0.588^{* * *} \\ (0.096) \end{gathered}$	$\begin{gathered} 0.598^{* * *} \\ (0.096) \end{gathered}$	$\begin{gathered} 0.652^{* * *} \\ (0.095) \end{gathered}$	$\begin{gathered} 0.589^{* * *} \\ (0.096) \end{gathered}$	$\begin{gathered} 0.648 \\ (0.401) \end{gathered}$	$\begin{gathered} 0.643^{* * *} \\ (0.095) \end{gathered}$	$\begin{gathered} 0.114 \\ (0.861) \end{gathered}$
δ	-	$\begin{gathered} 0.044 \\ (0.416) \end{gathered}$	-	-	$\begin{gathered} 2.595 \\ (18.784) \end{gathered}$	-	-
$\chi_{f e}$	$\begin{gathered} -0.017 \\ (0.020) \end{gathered}$	$\begin{gathered} -0.016 \\ (0.020) \end{gathered}$	$\begin{gathered} -0.023 \\ (0.021) \end{gathered}$	$\begin{gathered} -0.018 \\ (0.020) \end{gathered}$	$\begin{gathered} 0.003 \\ (0.140) \\ \hline \end{gathered}$	$\begin{gathered} -0.023 \\ (0.020) \end{gathered}$	$\begin{gathered} 0.005 \\ (0.049) \end{gathered}$
IV \mathbf{z}_{1}	Gy	Gy	Gy	x	x	x	$\mathrm{Gw}_{f e}$
IV z_{2}	x	x	x	Gx	Gx	Gx	$\mathbf{G}^{2} \mathbf{w}_{f e}$
IV z_{3}	-	Gx	-	-	$\mathrm{G}^{2} \mathrm{x}$	-	-
PFEs	NO	NO	YES	NO	NO	YES	NO
Obs.	1,141	1,141	1,132	1,141	1,141	1,132	1,141

Notes. Each column in this table reports OLS or IV/2SLS estimates of model (33), for both outcome variables as indicated in the headers of the top and bottom panels. Most estimates incorporate the restriction $\delta=0$ (no exogenous effects) unless they report an estimate for δ. All estimators are based upon orthogonality conditions between the error term and: (i) a constant vector; (ii) the $w_{k i}$ controls; (iii) two or three "instruments" (IVs) $\mathbf{z}_{1}, \mathbf{z}_{2}$ or \mathbf{z}_{3} as specified in each column; \mathbf{z}_{3} only appears in models featuring the exogenous effect. The "IV" $\mathbf{z}_{1}=\mathbf{G y}$ indicates OLS estimates. The vector $\mathbf{w}_{f e}$ represents the (stacked) female dummy. "PFEs" indicate that the estimates accommodate Province Fixed Effects: in this case, the data undergo a preliminary within transormation that removes province-specific averages from all variables, as well as observations (students) who are the sole representative of a province in the original sample. Point estimates for parameters other than β, γ, δ, and $\chi_{f e}$ are omitted. Standard errors are in parentheses. Asterisk series: ${ }^{*},{ }^{* *}$, and ${ }^{* * *}$; denote statistical significance at the 10, 5 and 1 per cent level, respectively. Obs.: Observations.
statistically appropriate in this setting. Column (6) adds province fixed effects to the baseline IV/2SLS of column (4), with implications analogous to the parallel exercise in OLS. Finally, due to the concern that the regressor x_{i} is endogenous, we also
attempt an IV estimator solely based on an instrument whose plausible exogeneity is easier to defend (though not assured): the female dummy. The resulting estimates, reported in column (7), are similar to those from baseline OLS, though much noisier - perhaps due to a weak instrument problem. ${ }^{39}$

A few additional observation about Table 6 are in order. First, the estimates for the binary outcome $y_{i}^{(2)}$ in the bottom panel have a similar interpretation to those of the main outcome across all estimators. In particular, estimates of social effects rise from around $\widehat{\beta} \simeq 0.1$ to about six times that value when moving from OLS to IV/2SLS, though none of these are statistically significant (recall that we adopt a specification and instruments set that differ slightly from the original paper). ${ }^{40}$ Even for the binary outcome, models that include the exogenous effect appear to yield very noisy estimates of both β and δ. Second, for both outcomes the estimates of γ appear robust to the choice of the estimator, specification, and instrument set. ${ }^{41}$ Finally, for both outcomes we also experimented with overidentified 2SLS estimators featuring instruments of the kind $\mathbf{G}^{s} \mathbf{x}$ for $s \geq 2$. The results, not reported for brevity, do not seem to substantively affect the main estimates.

Next, we discuss estimates obtained via our proposed GMM approach: collected in Table 7. All specifications in this table incorporate the restriction $\delta=0 .{ }^{42}$ We focus on outcome $y_{i}^{(1)}$ first. Column (1) reports results for the baseline specification of the later career GPA that uses characteristic matrix \mathbf{C}_{d}, the one based on geographical spatial decay, to model the spatial endogeneity of \mathbf{x}. The estimate for β is notably very small, negative, and not statistically significant: we consider it a statistical zero. Instead, the estimates of γ and $\chi_{f e}$ are in line with those from Table 6, while the

[^27]Table 7: Empirical estimates: proposed GMM approach

	Outcome variable: $y_{i}^{(1)}$ (later career GPA)						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
β	$\begin{aligned} & \hline-0.014 \\ & (0.033) \end{aligned}$	$\begin{gathered} \hline 0.144^{* *} \\ (0.059) \end{gathered}$	$\begin{gathered} \hline 0.144^{* *} \\ (0.059) \end{gathered}$	$\begin{aligned} & \hline-0.016 \\ & (0.034) \end{aligned}$	$\begin{aligned} & \hline-0.015 \\ & (0.033) \end{aligned}$	$\begin{aligned} & \hline 0.078^{* *} \\ & (0.031) \end{aligned}$	$\begin{gathered} \hline 0.112^{* * *} \\ (0.039) \end{gathered}$
γ	$\begin{gathered} 11.915^{* * *} \\ (0.496) \end{gathered}$	$\begin{aligned} & -1.135 \\ & (5.919) \end{aligned}$	$\begin{aligned} & -1.132 \\ & (5.911) \end{aligned}$	$\begin{gathered} 12.046^{* * *} \\ (0.634) \end{gathered}$	$\begin{gathered} 11.952^{* * *} \\ (0.504) \end{gathered}$	$\begin{gathered} 5.499 * * * \\ (1.516) \end{gathered}$	$\begin{gathered} 2.324 \\ (2.811) \end{gathered}$
$\chi_{f e}$	$\begin{gathered} 0.201^{* * *} \\ (0.055) \end{gathered}$	$\begin{gathered} 0.865^{* * *} \\ (0.302) \end{gathered}$	$\begin{gathered} 0.865 * * * \\ (0.302) \end{gathered}$	$\begin{gathered} 0.195 * * * \\ (0.059) \end{gathered}$	$\begin{gathered} 0.200^{* * *} \\ (0.056) \end{gathered}$	$\begin{gathered} 0.529 * * * \\ (0.090) \end{gathered}$	$\begin{gathered} 0.690^{* * *} \\ (0.149) \end{gathered}$
ξ	$\begin{aligned} & 4.321^{* *} \\ & (2.152) \end{aligned}$	$\begin{gathered} 0.059 * * * \\ (0.017) \end{gathered}$	$\begin{gathered} 0.059^{* * *} \\ (0.016) \end{gathered}$	$\begin{aligned} & 5.473^{*} \\ & (3.171) \end{aligned}$	$\begin{aligned} & 4.621^{* *} \\ & (2.064) \end{aligned}$	$\begin{gathered} 0.034^{* * *} \\ (0.008) \end{gathered}$	$\begin{gathered} 0.048^{* * *} \\ (0.011) \end{gathered}$
σ^{2}	$\begin{gathered} 1.586^{* * *} \\ (0.018) \end{gathered}$	$\begin{gathered} 2.000^{* * *} \\ (0.353) \end{gathered}$	$\begin{gathered} 2.000^{* * *} \\ (0.353) \end{gathered}$	$\begin{gathered} 1.587^{* * *} \\ (0.019) \end{gathered}$	$\begin{gathered} 1.586^{* * *} \\ (0.018) \end{gathered}$	$\begin{gathered} 1.686 * * * \\ (0.056) \end{gathered}$	$\begin{gathered} 1.815^{* * *} \\ (0.136) \end{gathered}$
	Outcome variable: $y_{i}^{(2)}$ (economics major choice)						
β	$\begin{gathered} \hline 0.058^{* *} \\ (0.028) \end{gathered}$	$\begin{aligned} & 0.062^{*} \\ & (0.036) \end{aligned}$	$\begin{aligned} & \hline 0.062^{*} \\ & (0.036) \end{aligned}$	$\begin{gathered} \hline 0.059^{* *} \\ (0.029) \end{gathered}$	$\begin{gathered} \hline 0.059^{* *} \\ (0.029) \end{gathered}$	$\begin{aligned} & 0.058^{*} \\ & (0.030) \end{aligned}$	$\begin{aligned} & \hline 0.059^{*} \\ & (0.033) \end{aligned}$
γ	$\begin{gathered} 0.610^{* * *} \\ (0.060) \end{gathered}$	$\begin{gathered} -1.271 \\ (0.837) \end{gathered}$	$\begin{gathered} -1.271 \\ (0.836) \end{gathered}$	$\begin{gathered} 0.614^{* * *} \\ (0.071) \end{gathered}$	$\begin{gathered} 0.612^{* * *} \\ (0.062) \end{gathered}$	$\begin{gathered} -0.400 \\ (0.433) \end{gathered}$	$\begin{gathered} -0.951 \\ (0.669) \end{gathered}$
$\chi_{f e}$	$\begin{aligned} & -0.017^{*} \\ & (0.010) \end{aligned}$	$\begin{aligned} & 0.078^{*} \\ & (0.042) \end{aligned}$	$\begin{aligned} & 0.078^{*} \\ & (0.042) \end{aligned}$	$\begin{aligned} & -0.018^{*} \\ & (0.010) \end{aligned}$	$\begin{aligned} & -0.018^{*} \\ & (0.010) \end{aligned}$	$\begin{gathered} 0.034 \\ (0.023) \end{gathered}$	$\begin{aligned} & 0.062^{*} \\ & (0.034) \end{aligned}$
ξ	$\begin{gathered} 1.026 \\ (1.282) \end{gathered}$	$\begin{gathered} 0.048^{* * *} \\ (0.017) \end{gathered}$	$\begin{gathered} 0.048^{* * *} \\ (0.017) \end{gathered}$	$\begin{gathered} 1.227 \\ (1.908) \end{gathered}$	$\begin{gathered} 1.099 \\ (1.378) \end{gathered}$	$\begin{gathered} 0.029 * * \\ (0.012) \end{gathered}$	$\begin{gathered} 0.042^{* * *} \\ (0.015) \end{gathered}$
σ^{2}	$\begin{gathered} 0.316^{* * *} \\ (0.005) \end{gathered}$	$\begin{gathered} 0.048^{* * *} \\ (0.016) \end{gathered}$	$\begin{gathered} 0.048^{* * *} \\ (0.016) \end{gathered}$	$\begin{gathered} 0.316^{* * *} \\ (0.005) \end{gathered}$	$\begin{gathered} 0.316^{* * *} \\ (0.005) \end{gathered}$	$\begin{gathered} 0.331 * * * \\ (0.013) \end{gathered}$	$\begin{gathered} 0.350^{* * *} \\ (0.029) \end{gathered}$
$\delta=0$	YES						
C	C_{d}	$\mathrm{C}_{h 1}$	$\mathrm{C}_{h 2}$	$\mathbf{C}_{\text {dh1 }}$	$\mathbf{C}_{\text {dh2 }}$	$\mathbf{I}+\mathbf{G}$	I $+\frac{1}{2} \mathbf{G}$
Obs.	1,141	1,141	1,141	1,141	1,141	1,141	1,141

Notes. Each column in this table reports estimates of model (33), using the GMM estimator described in Section 4, for both outcome variables as indicated in the headers of the top and bottom panels. All estimates incorporate the restrictions $\delta=0$ and $\psi=0$. Estimation is performed under the assumption that variable x_{i} is endogenous as per (34) and (35) for some characteristic matrix C which is specified in each column, and that is incorporated in the GMM moment conditions. Point estimates for parameters other than $\beta, \gamma, \chi_{f e}, \xi$ and σ^{2} are omitted. Standard errors are in parentheses. Asterisk series: ${ }^{*},{ }^{* *}$, and ${ }^{* * *}$; denote statistical significance at the 10,5 and 1 per cent level, respectively. Obs.: Observations.
estimate of the key parameter that quantifies endogeneity is in the order of $\widehat{\xi} \simeq 4.3$, and is statistically significant. Columns (2) and (3) instead report estimates based on the two characteristic matrices $\mathbf{C}_{h 1}$ and $\mathbf{C}_{h 2}$ constructed from fully segregated groups of students defined by the historical polity of linguistic subgroup to which
their home provinces belong. These results are virtually identical and, unlike those from column (1), they register a positive and statistically significant estimate of β, a small and statistically significant estimate of ξ, and a negative estimate of γ, though with standard errors that are large enough so that confidence intervals at conventional levels cover positive values close to the estimates of γ from Table 6 .

How to make sense of these divergent results? We find the difference in magnitude of the estimates of ξ quite revealing. Note that the square of ξ, multiplied by selected off-diagonal values of $\mathbf{C C}{ }^{\mathrm{T}}$, delivers an estimate of the endogenous component of the spatial correlation of \mathbf{x} between any two observations. Given the figures in Table 4, for the average pair of students this estimate equals about 0.012 for \mathbf{C}_{d} (in the same order of magnitude of the estimated Moran's I) and a negligible number close to 10^{-5} for $\mathbf{C}_{h 1}$ and $\mathbf{C}_{h 2}$. We argue that the latter two matrices do not adequately capture a meaningful endogenous pattern of spatial correlation in the data: forcing them into our model is not enough to correct for the bias in β, but it effectively introduces a source of noise in the transformed regressors of the moment conditions (17) which is likely to attenuate the estimate of γ. We find this problem analogous to the one of weak instruments in standard IV/2SLS, and we find the full-fledged analysis of its implications worthy of future work. This said, we draw two implications from these results. First, our approach can lead to estimating statistically insignificant social effects in settings where conventional approaches estimate them as significant. Second, the choice of the characteristic matrix matters. We suggest that applied researchers interested in testing whether their results about social effects are maintained after implementing our method (for example, when performing robustness checks) experiment with multiple plausible characteristic matrices.

To corroborate these observations, we proceed in two directions. First, we estimate our GMM model using two matrices $\mathbf{C}_{d h 1}$ and $\mathbf{C}_{d h 2}$ defined as:

$$
\mathbf{C}_{d h 1} \equiv \mathbf{C}_{d} \circ \mathbb{1}\left[\mathbf{C}_{h 1}>0\right]
$$

where o denotes the Hadamard (element-wise) product whereas $\mathbb{1}\left[\mathbf{C}_{h 1}>0\right]$ indicates, with some abuse of notation, the $N \times N$ binary matrix with entries equal to 1 for corresponding positive entries of $\mathbf{C}_{h 1}$, and zero otherwise; $\mathbf{C}_{d h 2}$ is defined symmetrically. We refrain from providing any deep interpretation to these matrices: we merely treat them as an exercise in misspecification, asking ourselves whether a perturbation to
matrix \mathbf{C}_{d} guided by reasonable a-priori criteria (as per the "groups" expressed in the $\mathbf{C}_{h 1}$ and $\mathbf{C}_{h 2}$) affects the results substantively. The results, given in columns (4) and (5) of Table 7, are reassuring, as they hardly differ from those of column (1). We also experiment with GMM estimates based on characteristic matrices that are function of the network adjacency matrix: namely, $\mathbf{I}+\mathbf{G}$ and $\mathbf{I}+\frac{1}{2} \mathbf{G}$. The results in columns (6) and (7) are similar to those based on $\mathbf{C}_{h 1}$ and $\mathbf{C}_{h 2}$: this is hardly surprising because \mathbf{G} is exogenous in this particular setting, and hence it is also unlikely to capture any meaningful endogenous component of spatial correlation.

Some additional comments about our GMM results are in order. First, estimates about the binary outcome $y_{i}^{(2)}$ (bottom panel of Table 7) present patterns analogous to the estimates about $y_{i}^{(1)}$. Notably, social effects are always estimated statistically significant and in a neighborhood of $\widehat{\beta} \simeq 0.06$, a figure very close to the main results by De Giorgi et al. (2010). Moreover, the results based upon our favorite characteristic matrix \mathbf{C}_{d} do not register a statistically significant estimate of ξ. This suggests that unobserved preferences towards majors - economics versus business administration are unlikely to follow geographically correlated patterns. ${ }^{43}$ Second, observe that none of the seven characteristic matrices we experimented with admits a straightforward transformation of the kind $\mathbf{B C}=\mathbf{0}$, as per the discussion from Sections 2.3 and 5 . Thus, we derived \mathbf{B} from the Moore-Penrose pseudoinverse of each matrix \mathbf{C} and in each case, we estimated model (13) via IV/2SLS for both outcomes of interest. The results from this exercise are reported in the appendix: they often feature unrealistic point estimates and large standard errors, suggesting that for non-trivial characteristic matrices, this approach may be unreliable in practical applications.

7 Conclusion

In this paper we have shown that, under certain configurations of the underlying socioeconomic relationships that determine the characteristics and relevant outcomes of economic agents, it is possible to identify and estimate peer or social effects within a standard spatial econometric framework, even if the right-hand side characteristics are themselves endogenous. The requirements for identification are quite general: it

[^28]suffices that the network of social interactions is exogenous, not fully-overlapping in only a slightly stronger sense relative to the identification conditions by Bramoullé et al. (2009), and that the spatial structure of endogeneity (the dependence of individual covariates on peers' unobservables) is known by the econometrician up to a multiplicative constant. This approach can be applied to studies about peer effects where the the right-hand side individual characteristics used for identification are possibly endogenous and affected by correlated effects. In our empirical application based on the study by De Giorgi et al. (2010), we show that applying our approach under different specifications of the spatial structure of endogeneity can lead to precise zero estimates of the social effects, while conventional methods would estimate positive and statistically significant effects.

We envision three areas for future work. First, we plan to extend our approach to more general specifications of the stochastic process driving endogeneity, such as non-linear ones or with conditionally heteroscedastic primitive errors. To this end, we plan to investigate the applicability of semi-parametric estimators or control function approaches that are less reliant upon linear functional forms. Second, we plan to relax the assumption about exogeneity of the network \mathcal{G}, by incorporating either control function methods à la Arduini et al. (2015) or Johnsson and Moon (2021), or a GMM approach for panel data in the spirit of Kuersteiner and Prucha (2020). ${ }^{44}$ Third, and last, we believe it would be worthwhile to integrate the recent literature that exploits penalized estimators in order to recover an unknown network structure (Rose, 2017b; de Paula et al., 2019) within our framework. Specifically, we believe that with partial information about the network structure, this kind of approaches may help identify an unknown characteristics structure \mathcal{C}, or the SARMA structure of the error term, and thus mitigate the main requirement of our approach: that is, the a priori knowledge of the structure in question.

[^29]
References

Angrist, Joshua D. (2014) "The perils of peer effects," Labour Economics, Vol. 30, pp. 98-108.
Arduini, Tiziano, Eleonora Patacchini, and Edoardo Rainone (2015) "Parametric and Semiparametric IV Estimation of Network Models with Selectivity." EIEF Working Paper 15/09.

Azoulay, Pierre, Joshua S. Graff Zivin, and Jialan Wang (2010) "Superstar Extinction," The Quarterly Journal of Economics, Vol. 125, No. 2, pp. 549-589.

Bloom, Nicholas, Mark Schankerman, and John Van Reenen (2013) "Identifying Technology Spillovers and Product Market Rivalry," Econometrica, Vol. 81, No. 4, pp. 1347-1393.

Blume, Lawrence E., William A. Brock, Steven N Durlauf, and Rajshri Jayaraman (2015) "Linear Social Interactions Models," Journal of Political Economy, Vol. 123, No. 2, pp. 444-496.

Bramoullé, Yann, Habiba Djebbari, and Bernard Fortin (2009) "Identification of peer effects through social networks," Journal of Econometrics, Vol. 150, No. 1, pp. 41-55.

- (2020) "Peer Effects in Networks: A Survey," Annual Review of Economics, Vol. 12, pp. 603-629.

Calvó-Armengol, Antoni, Eleonora Patacchini, and Yves Zenou (2009) "Peer Effects and Social Networks in Education," The Review of Economic Studies, Vol. 76, No. 4, pp. 1239-1267.

Carrell, Scott E., Bruce I. Sacerdote, and James E. West (2013) "From Natural Variation to Optimal Policy? The Importance of Endogenous Peer Group Formation," Econometrica, Vol. 81, No. 3, pp. 855-882.

Christakis, Nicholas A. and James H. Fowler (2013) "Social contagion theory: examining dynamic social networks and human behavior," Statistics in medicine, Vol. 32, No. 4, pp. 556-577.

Cliff, Andrew D. and John Keith Ord (1981) Spatial Processes: Models and Applications: Pion London.

Conley, Timothy G. and Christopher R. Udry (2010) "Learning about a new technology: Pineapple in Ghana," American Economic Review, Vol. 100, No. 1, pp. 35-69.

Davezies, Laurent, Xavier D'Haultfoeuille, and Denis Fougère (2009) "Identification of peer effects using group size variation," The Econometrics Journal, Vol. 12, No. 3, pp. 397-413.

De Giorgi, Giacomo, Michele Pellizzari, and Silvia Redaelli (2010) "Identification of Social Interactions through Partially Overlapping Peer Groups," American Economic Journal: Applied Economics, Vol. 2, No. 2, pp. 241-275.
de Paula, Áureo, Imran Rasul, and Pedro Sousa (2019) "Identifying network ties from panel data: theory and an application to tax competition." CeMMAP Working Paper 55/19.

Drukker, David M., Peter Egger, and Ingmar R. Prucha (2013) "On Two-Step Estimation of a Spatial Autoregressive Model with Autoregressive Disturbances and Endogenous Regressors," Econometric Reviews, Vol. 32, No. 5-6, pp. 686-733.

Duflo, Esther and Emmanuel Saez (2003) "The Role of Information and Social Interactions in Retirement Plan Decisions: Evidence from a Randomized Experiment," The Quarterly Journal of Economics, Vol. 118, No. 3, pp. 815-842.

Elhorst, Paul J. (2014) Spatial Econometrics: From Cross-Sectional Data to Spatial Panels: Springer.
Glaeser, Edward L., Bruce I. Sacerdote, and José A. Scheinkman (1996) "Crime and Social Interactions," The Quarterly Journal of Economics, Vol. 11, No. 2, pp. 507-48.

Goldsmith-Pinkham, Paul and Guido W. Imbens (2013) "Social Networks and the Identification of Peer Effects," Journal of Business \& Economic Statistics, Vol. 31, No. 3, pp. 253-264.

Graham, Bryan S. (2008) "Identifying Social Interactions Through Conditional Variance Restrictions," Econometrica, Vol. 76, No. 3, pp. 643-660.
__ (2017) "An Econometric Model of Network Formation with Degree Heterogeneity," Econometrica, Vol. 85, No. 4, pp. 1033-1063.

Jaffe, Adam B. (1986) "Technological opportunity and spillovers of R\&D: evidence from firms' patents, profits and market value," American Economic Review, Vol. 76, No. 5, pp. 984-1001.
_ (1989) "Characterizing the technological position of firms, with application to quantifying technological opportunity and research spillovers," Research Policy, Vol. 18, No. 2, pp. 87-97.

Johnsson, Ida and Hyungsik Roger M. Moon (2021) "Estimation of Peer Effects in Endogenous Social Networks: Control Function Approach," The Review of Economics and Statistics, Vol. 103, No. 2, pp. 328-345.

Kapoor, Mudit, Harry H. Kelejian, and Ingmar R. Prucha (2007) "Panel data models with spatially correlated error components," Journal of Econometrics, Vol. 140, No. 1, pp. 97-130.

Kelejian, Harry H. and Ingmar R. Prucha (1998) "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Vol. 17, No. 1, pp. 99-121.

- (2001) "On the asymptotic distribution of the Moran I test statistic with applications," Journal of Econometrics, Vol. 104, No. 2, pp. 219-257.
_ (2007) "HAC estimation in a spatial framework," Journal of Econometrics, Vol. 140, No. 1, pp. 131-154.
_ (2010) "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Vol. 157, No. 1, pp. 53-67.

Kuersteiner, Guido M. and Ingmar Prucha (2020) "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Vol. 88, No. 5, pp. 2109-2146.

Lee, Lung-fei (2007a) "GMM and 2SLS estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Vol. 137, No. 2, pp. 489-514.

- (2007b) "Identification and estimation of econometric models with group interactions, contextual factors and fixed effects," Journal of Econometrics, Vol. 140, No. 2, pp. 333-374.

Lee, Lung-fei, Xiaodong Liu, and Xu Lin (2010) "Specification and estimation of social interaction models with network structures," The Econometrics Journal, Vol. 13, No. 2, pp. 145-176.

Lee, Lung-fei and Xiaodong Liu (2010) "Efficient GMM estimation of high order spatial autoregressive models with autoregressive disturbances," Econometric Theory, Vol. 26, No. 1, pp. 187-230.

Lin, Xu and Lung-fei Lee (2010) "GMM estimation of spatial autoregressive models with unknown heteroskedasticity," Journal of Econometrics, Vol. 157, No. 1, pp. 34-52.

Liu, Xiaodong and Lung-fei Lee (2010) "GMM estimation of social interaction models with centrality," Journal of Econometrics, Vol. 157, No. 1, pp. 34-52.

Lychagin, Sergey, Joris Pinkse, Margaret E. Slade, and John Van Reenen (2016) "Spillovers in Space: Does Geography Matter?" The Journal of Industrial Economics, Vol. 64, No. 2, pp. 295-335.

Manski, Charles F. (1993) "Identification of Endogenous Social Effects: The Reflection Problem," The Review of Economic Studies, Vol. 60, No. 3, pp. 531-542.

Mas, Alexandre and Enrico Moretti (2009) "Peers at Work," American Economic Review, Vol. 99, No. 1, pp. 112-145.

Moffitt, Robert A. (2001) "Policy Interventions, Low-Level Equilibria And Social Interactions," in Steven Durlauf and Peyton Young eds. Social Dynamics: MIT Press.

Pereda-Fernández, Santiago (2017) "Social Spillovers in the Classroom: Identification, Estimation and Policy Analysis," Economica, Vol. 84, No. 336, pp. 712-747.

Rose, Christiern D. (2017a) "Identification of peer effects through social networks using variance restrictions," The Econometrics Journal, Vol. 20, No. 3, pp. S47-S60.
_ (2017b) "Identification of Spillover Effects using Panel Data." Unpublished working paper.
Sacerdote, Bruce I. (2001) "Peer Effects with Random Assignment: Results for Dartmouth Roommates," The Quarterly Journal of Economics, Vol. 116, No. 2, pp. 681-704.

Waldinger, Fabian (2012) "Peer Effects in Science: Evidence from the Dismissal of Scientists in Nazi Germany," The Review of Economics Studies, Vol. 72, No. 2, pp. 838-861.

Watts, Duncan J. and Steven H. Strogatz (1998) "Collective dynamics of 'small-world' networks," Nature, Vol. 393, No. 6684, pp. 440-442.

White, Halbert L. (1996) Estimation, Inference and Specification Analysis: Cambridge University Press.

Zacchia, Paolo (2020) "Knowledge Spillovers through Networks of Scientists," The Review of Economic Studies, Vol. 84, No. 7, pp. 1989-2018.

Appendix - Mathematical Proofs

Proof of Theorem 1

Preliminaries. Before proceeding to the extended proof of the Theorem, it is useful to establish some notation. Let $\boldsymbol{\theta}_{1} \equiv(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\delta})$, $\boldsymbol{\theta}_{2} \equiv(\boldsymbol{\phi}, \boldsymbol{\psi})$,

$$
\begin{equation*}
\boldsymbol{\Psi}_{A M}\left(\boldsymbol{\theta}_{2}\right) \equiv\left(\mathbf{I}-\phi_{1} \mathbf{F}_{1}-\cdots-\phi_{A} \mathbf{F}_{A}\right)^{-1}\left(\mathbf{I}+\psi_{1} \mathbf{E}_{1}+\cdots+\psi_{M} \mathbf{E}_{M}\right) \tag{A.1}
\end{equation*}
$$

and:

$$
\varepsilon\left(\boldsymbol{\theta}_{1}\right) \equiv \mathbf{y}-\alpha \iota-\beta \mathbf{G} \mathbf{y}-\mathbf{X} \boldsymbol{\gamma}-\mathbf{G X} \boldsymbol{\mathcal { \delta }},
$$

as well as:

$$
\boldsymbol{u}(\boldsymbol{\theta})=\frac{1}{\sigma} \boldsymbol{\Psi}_{A M}^{-1}\left(\boldsymbol{\theta}_{2}\right) \boldsymbol{\varepsilon}\left(\boldsymbol{\theta}_{1}\right),
$$

an object that exists only so long as $\boldsymbol{\Psi}_{A M}\left(\boldsymbol{\theta}_{2}\right)$ is nonsingular. In the proof, we express key functions of interest in terms of "impostor" parameter vectors that have the same length as our parameters of interest (or subsets thereof). We denote such vectors by a small tilde, e.g. $\tilde{\boldsymbol{\phi}}$ or $\tilde{\boldsymbol{\psi}}$. We assume that $\tilde{\sigma}>0$ and importantly, that without loss of generality $\tilde{\boldsymbol{\phi}}$ and $\tilde{\boldsymbol{\psi}}$ always lie within the unit circle, and that:

$$
\begin{equation*}
\mathbf{\Psi}_{A M}\left(\tilde{\boldsymbol{\theta}}_{2}\right) \equiv\left(\mathbf{I}-\tilde{\phi}_{1} \mathbf{F}_{1}-\cdots-\tilde{\phi}_{A} \mathbf{F}_{A}\right)^{-1}\left(\mathbf{I}+\tilde{\psi}_{1} \mathbf{E}_{1}+\cdots+\tilde{\psi}_{M} \mathbf{E}_{M}\right) \tag{A.2}
\end{equation*}
$$

is always nonsingular. Failing these assumptions, by construction the values of $\tilde{\sigma}, \tilde{\boldsymbol{\phi}}$ and $\tilde{\psi}$ cannot be mistaken for the true values of $\boldsymbol{\phi}$ and $\boldsymbol{\psi}$, and thus our identification proof would be moot as far as the structure of the error term's variance-covariance is concerned.

It is also useful to further elaborate on the expressions (A.1) and (A.2):

$$
\begin{aligned}
\boldsymbol{\Psi}_{A M}\left(\boldsymbol{\theta}_{2}\right) & =\left(\mathbf{I}-\sum_{a=1}^{A} \boldsymbol{\phi}_{a} \mathbf{F}_{a}\right)^{-1}\left[\left(\mathbf{I}+\sum_{m=1}^{M} \tilde{\psi}_{m} \mathbf{E}_{m}\right)+\sum_{m=1}^{M}\left(\psi_{m}-\tilde{\psi}_{m}\right) \mathbf{E}_{m}\right] \\
\boldsymbol{\Psi}_{A M}^{-1}\left(\tilde{\boldsymbol{\theta}}_{2}\right) & =\left(\mathbf{I}+\sum_{m=1}^{M} \tilde{\boldsymbol{\psi}}_{m} \mathbf{E}_{m}\right)^{-1}\left[\left(\mathbf{I}-\sum_{a=1}^{A} \phi_{a} \mathbf{F}_{a}\right)+\sum_{a=1}^{A}\left(\phi_{a}-\tilde{\phi}_{a}\right) \mathbf{F}_{a}\right] .
\end{aligned}
$$

Hence, the product $\boldsymbol{\Phi}_{A M}\left(\boldsymbol{\theta}_{2}, \tilde{\boldsymbol{\theta}}_{2}\right) \equiv \boldsymbol{\Psi}_{A M}^{-1}\left(\tilde{\boldsymbol{\theta}}_{2}\right) \cdot \boldsymbol{\Psi}_{A M}\left(\boldsymbol{\theta}_{2}\right)$ can be expressed as:

$$
\begin{align*}
\boldsymbol{\Phi}_{A M}\left(\boldsymbol{\theta}_{2}, \tilde{\boldsymbol{\theta}}_{2}\right)=\mathbf{I}+\sum_{m=1}^{M} \mathbf{\Upsilon}_{m}^{\psi}\left(\psi_{m}-\right. & \left.\tilde{\psi}_{m}\right)+\sum_{a=1}^{A} \mathbf{\Upsilon}_{a}^{\phi}\left(\phi_{a}-\tilde{\boldsymbol{\phi}}_{a}\right)+ \\
& +\sum_{m=1}^{M} \sum_{a=1}^{A} \mathbf{\Upsilon}_{m a}^{\psi, \phi}\left(\psi_{m}-\tilde{\psi}_{m}\right)\left(\phi_{a}-\tilde{\boldsymbol{\phi}}_{a}\right) \tag{A.3}
\end{align*}
$$

where $\left(\mathbf{\Upsilon}_{1}^{\psi}, \ldots, \mathbf{\Upsilon}_{M}^{\psi}\right)$ is a collection of some M matrices, $\left(\mathbf{\Upsilon}_{1}^{\phi}, \ldots, \mathbf{\Upsilon}_{A}^{\phi}\right)$ is a collection of soome A matrices, and $\left(\Upsilon_{11}^{\psi, \phi}, \ldots, \mathbf{\Upsilon}_{1 A}^{\psi, \phi}, \ldots, \mathbf{\Upsilon}_{M 1}^{\psi, \phi}, \ldots, \Upsilon_{M A}^{\psi, \phi}\right)$ is some collection of $M A$ matrices. All these collections are functions of $\boldsymbol{\theta}_{2}, \tilde{\boldsymbol{\theta}}_{2}$, as well as of both the \mathbf{E}_{m} and the \mathbf{F}_{a} matrices. One can verify that the matrices within each of these collections are mutually linearly independent if the matrices of the \mathbf{E}_{m} kind as well as of the \mathbf{F}_{a} kind are themselves mutually linearly independent, as maintained by Assumption 5.

Proof proper. Define the following set of moment functions:

$$
\begin{array}{rlr}
g_{0}(\boldsymbol{\theta}) & =\boldsymbol{\iota}^{\mathrm{T}} \boldsymbol{u}(\boldsymbol{\theta}) \\
g_{1, q k}(\boldsymbol{\theta}) & =\mathbf{x}_{k}^{\mathrm{T}} \mathbf{G}^{q-1} \boldsymbol{u}(\boldsymbol{\theta})-\xi_{k} \lambda_{1, k q}^{*} & \text { for } k=1, \ldots, K \text { and } q=1, \ldots, Q, \\
g_{2, p}(\boldsymbol{\theta}) & =\boldsymbol{u}(\boldsymbol{\theta}) \mathbf{P}^{p} \boldsymbol{u}(\boldsymbol{\theta})-\lambda_{2, p}^{*} & \text { for } p=1, \ldots, P,
\end{array}
$$

where $Q \geq 4, P \geq 1+A+M$, and:

$$
\begin{aligned}
\lambda_{1, k q}^{*} & \equiv \operatorname{Tr}\left(\mathbf{C}_{k}^{\mathrm{T}} \mathbf{G}^{q-1}\right), \\
\lambda_{2, p}^{*} & \equiv \operatorname{Tr}\left(\mathbf{P}_{p}\right)
\end{aligned}
$$

Observe that these moment conditions differ slightly from those described in Section 4. We stack these moments vertically to make up the vector $\mathbf{g}(\boldsymbol{\theta})$ of length $1+Q K+P$. This proof shows that the the expectation of $\mathbf{g}(\boldsymbol{\theta})$ is set at zero by a unique vector of parameter values, or structure. It is useful to partition $\mathbf{g}(\boldsymbol{\theta})$ in two blocks: $\mathbf{g}_{1}(\boldsymbol{\theta})$, which collects the first $1+Q K$ moments, and $\mathbf{g}_{2}(\boldsymbol{\theta})$, which collects all the remaining P moments. We analyze the expectations of these two blocks in sequence.

Following some manipulation, the expectation of the first block can be written as a function of an impostor parameter vector $\tilde{\boldsymbol{\theta}}$ as:

$$
\begin{align*}
& \mathbb{E}\left[\mathbf{g}_{1}(\tilde{\boldsymbol{\theta}})\right]=\frac{1}{\tilde{\sigma}} \mathbb{E}\left[\left(\mathbf{K}_{\tilde{\boldsymbol{x}}}+\mathbf{K}_{\boldsymbol{u}}\right)^{\mathrm{T}} \cdot \mathbf{\Psi}_{A M}^{-1}\left(\tilde{\boldsymbol{\theta}}_{2}\right) \cdot\left(\mathbf{S}_{\tilde{\boldsymbol{x}}}+\mathbf{S}_{\boldsymbol{u}}\right)\right]\left(\boldsymbol{\theta}_{1}-\tilde{\boldsymbol{\theta}}_{1}\right)+ \\
&+\frac{\sigma}{\tilde{\sigma}} \mathbb{E}\left[\left(\mathbf{K}_{\tilde{\boldsymbol{x}}}+\mathbf{K}_{\boldsymbol{u}}\right)^{\mathrm{T}} \cdot \boldsymbol{\Psi}_{A M}^{-1}\left(\tilde{\boldsymbol{\theta}}_{2}\right) \cdot \boldsymbol{\Psi}_{A M}(\boldsymbol{\theta}) \cdot \boldsymbol{v}\right]-\boldsymbol{\Lambda} \tilde{\boldsymbol{\xi}} \tag{A.4}
\end{align*}
$$

where $\mathbf{K}_{\widetilde{\boldsymbol{x}}}$ and $\mathbf{K}_{\boldsymbol{u}}$ are two matrices of dimension $N \times 1+Q K$, while $\mathbf{S}_{\tilde{\boldsymbol{x}}}$ and $\mathbf{S}_{\boldsymbol{u}}$ are two matrices of dimension $N \times 2(1+K)$:

$$
\begin{aligned}
& \mathbf{K}_{\tilde{x}} \equiv\left[\begin{array}{lllll}
\imath & \widetilde{\mathbf{X}} & \mathbf{G} \widetilde{\mathbf{X}} & \ldots & \mathbf{G}^{q-1} \widetilde{\mathbf{X}}
\end{array}\right], \\
& \mathbf{K}_{\boldsymbol{u}} \equiv\left[\begin{array}{lllll}
\mathbf{0} & \left.\left[\begin{array}{llll}
\mathbf{I} & \mathbf{G} & \ldots & \mathbf{G}^{q-1}
\end{array}\right]\left[\begin{array}{llll}
\mathfrak{l}_{Q}^{\mathrm{T}} \otimes\left[\begin{array}{lll}
\mathbf{C}_{1} \boldsymbol{v} & \ldots & \mathbf{C}_{K} \boldsymbol{v}
\end{array}\right]
\end{array}\right]\right], ~
\end{array}\right. \\
& \mathbf{S}_{\widetilde{\boldsymbol{x}}} \equiv\left[\begin{array}{llll}
\iota & \mathbf{G}(\mathbf{I}-\beta \mathbf{G})^{-1}(\alpha \iota+\widetilde{\mathbf{X}} \boldsymbol{\gamma}+\mathbf{G} \widetilde{\mathbf{X}} \boldsymbol{\delta}) & \widetilde{\mathbf{X}} & \mathbf{G} \widetilde{\mathbf{X}}
\end{array}\right], \\
& \mathbf{S}_{\boldsymbol{u}} \equiv\left[\begin{array}{llll}
\mathbf{0} & \boldsymbol{\Xi} \boldsymbol{v} & \left.\left[\begin{array}{ll}
\mathbf{I} & \mathbf{G}
\end{array}\right]\left[\begin{array}{lll}
\mathbf{l}_{2}^{\mathrm{T}} \otimes\left[\begin{array}{lll}
\mathbf{C}_{1} \boldsymbol{v} & \ldots & \mathbf{C}_{K} \boldsymbol{v}
\end{array}\right] \boldsymbol{\xi}
\end{array}\right]\right]
\end{array}\right], \\
& \text { with } \boldsymbol{\Xi} \equiv \mathbf{G}(\mathbf{I}-\beta \mathbf{G})^{-1}\left[\sum_{k=1}^{K} \xi_{k}\left(\gamma_{k} \mathbf{I}+\delta_{k} \mathbf{G}\right) \mathbf{C}_{k}\right] \text { and } \widetilde{\mathbf{X}} \equiv\left[\begin{array}{lll}
\widetilde{\mathbf{x}}_{1} & \ldots & \left.\widetilde{\mathbf{x}}_{K}\right] \text { is a } N \times K
\end{array}\right.
\end{aligned}
$$

matrix that gathers the independent components of \mathbf{X}; whereas:

$$
\boldsymbol{\Lambda} \equiv\left[\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
\operatorname{Tr}\left(\mathbf{C}_{1}\right) & 0 & \cdots & 0 \\
0 & \operatorname{Tr}\left(\mathbf{C}_{2}\right) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \operatorname{Tr}\left(\mathbf{C}_{K}\right) \\
\operatorname{Tr}\left(\mathbf{G C}_{1}\right) & 0 & \cdots & 0 \\
0 & \operatorname{Tr}\left(\mathbf{G} \mathbf{C}_{2}\right) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \operatorname{Tr}\left(\mathbf{G} \mathbf{C}_{K}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{Tr}\left(\mathbf{G}^{Q} \mathbf{C}_{1}\right) & 0 & \cdots & 0 \\
0 & \operatorname{Tr}\left(\mathbf{G}^{Q} \mathbf{C}_{2}\right) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \operatorname{Tr}\left(\mathbf{G}^{Q-1} \mathbf{C}_{K}\right)
\end{array}\right]
$$

is a $1+Q K \times K$ matrix with full column rank if $\operatorname{Tr}\left(\mathbf{C}_{k}\right), \operatorname{Tr}\left(\mathbf{C}_{k} \mathbf{G}\right), \ldots, \operatorname{Tr}\left(\mathbf{C}_{k} \mathbf{G}^{Q-1}\right)$ are not simultaneously all zero for $k=1, \ldots, K$, i.e. condition (ii) of the Theorem.

Through additional manipulation, (A.4) can be expressed as:

$$
\begin{equation*}
\mathbb{E}\left[\mathbf{g}_{1}(\tilde{\boldsymbol{\theta}})\right]=\boldsymbol{\Pi}\binom{\boldsymbol{\theta}_{1}-\tilde{\boldsymbol{\theta}}_{1}}{\xi-\tilde{\boldsymbol{\xi}}}+\boldsymbol{\varphi} \tag{A.5}
\end{equation*}
$$

where:

$$
\boldsymbol{\Pi} \equiv \frac{1}{\tilde{\sigma}}\left[\mathbb{E}\left[\left(\mathbf{K}_{\tilde{x}}+\mathbf{K}_{\boldsymbol{u}}\right)^{\mathrm{T}} \cdot \mathbf{\Psi}_{A M}^{-1}\left(\tilde{\boldsymbol{\theta}}_{2}\right) \cdot\left(\mathbf{S}_{\tilde{\boldsymbol{x}}}+\mathbf{S}_{\boldsymbol{u}}\right)\right] \quad \sigma \boldsymbol{\Lambda}\right],
$$

is a $1+Q K \times 2+3 K$ matrix that has full column rank as per the Theorem's conditions including (i), i.e. mutual linear independence of $\mathbf{I}, \mathbf{G}, \mathbf{G}^{2}$ and \mathbf{G}^{3}, and (ii); whereas:

$$
\boldsymbol{\varphi} \equiv \frac{1}{\tilde{\sigma}} \boldsymbol{\Lambda} \tilde{\boldsymbol{\xi}}(\sigma-\tilde{\boldsymbol{\sigma}})+\frac{\sigma}{\tilde{\sigma}} \mathbb{E}\left[\left(\mathbf{K}_{\tilde{\boldsymbol{x}}}+\mathbf{K}_{\boldsymbol{u}}\right)^{\mathrm{T}}\left(\boldsymbol{\Phi}_{A M}\left(\boldsymbol{\theta}_{2}, \tilde{\boldsymbol{\theta}}_{2}\right)-\mathbf{I}\right) \boldsymbol{v}\right],
$$

is a vector of length $1+Q K$ whose first entry is given by $\varphi_{1}=0$, and:

$$
\begin{align*}
& \varphi_{1+(q-1) K+k}=\widetilde{\varphi}_{q k}\left(\sigma, \tilde{\sigma}, \boldsymbol{\theta}_{2}, \tilde{\boldsymbol{\theta}}_{2}\right) \equiv \frac{\xi_{k}}{\tilde{\sigma}}\left\{\frac{\tilde{\xi}_{k}}{\xi_{k}} \operatorname{Tr}\left(\mathbf{C}_{k} \mathbf{G}^{q-1}\right)(\sigma-\tilde{\sigma})+\right. \\
&+\sigma^{2}\left[\sum_{m=1}^{M} \operatorname{Tr}\left(\left(\mathbf{G}^{q-1} \mathbf{C}_{k}\right)^{\mathrm{T}} \boldsymbol{\Upsilon}_{m}^{\psi}\right)\left(\psi_{m}-\tilde{\psi}_{m}\right)+\sum_{a=1}^{A} \operatorname{Tr}\left(\left(\mathbf{G}^{q-1} \mathbf{C}_{k}\right)^{\mathrm{T}} \boldsymbol{\Upsilon}_{a}^{\phi}\right)\left(\phi_{a}-\tilde{\phi}_{a}\right)+\right. \\
&\left.\left.+\sum_{m=1}^{M} \sum_{a=1}^{A} \operatorname{Tr}\left(\left(\mathbf{G}^{q-1} \mathbf{C}_{k}\right)^{\mathrm{T}} \boldsymbol{\Upsilon}_{a m}^{\psi, \phi}\right)\left(\psi_{m}-\tilde{\psi}_{m}\right)\left(\boldsymbol{\phi}_{a}-\tilde{\phi}_{a}\right)\right]\right\}, \tag{A.6}
\end{align*}
$$

provides the expression for all other $Q K$ entries, for $q=1, \ldots, Q$ and $k=1, \ldots, K$. Observe that while the value of $\boldsymbol{\varphi}$ depends on $\sigma, \tilde{\boldsymbol{\sigma}}, \boldsymbol{\theta}_{2}$, and $\tilde{\boldsymbol{\theta}}_{2}$ (though for simplicity we largely omit this dependence from the notation used above), if $\sigma=\tilde{\sigma}$ and $\boldsymbol{\theta}_{2}=\tilde{\boldsymbol{\theta}}_{2}$ it follows that $\boldsymbol{\varphi}=\mathbf{0}$.

Observe that since $\boldsymbol{\Pi}$ has full column rank by construction, the solution in terms of the vectors $\left(\boldsymbol{\theta}_{1}-\tilde{\boldsymbol{\theta}}_{1}\right)$ and $(\xi-\tilde{\boldsymbol{\xi}})$ that would set (A.5) at zero as is predicated by our model - if one such solution exists - must satisfy:

$$
\begin{equation*}
\binom{\theta_{1}-\tilde{\theta}_{1}}{\xi-\tilde{\xi}}=-\Pi^{+} \varphi \tag{A.7}
\end{equation*}
$$

where $\boldsymbol{\Pi}^{+}$is the Moore-Penrose pseudoinverse of $\boldsymbol{\Pi}$. In what follows, we analyze the second block of moments and show that for the value of $\left(\boldsymbol{\theta}_{1}-\tilde{\boldsymbol{\theta}}_{1}\right)$ that is consistent with (A.7), the second block is set at zero in expectation if and only if both $\sigma=\tilde{\sigma}$ and $\boldsymbol{\theta}_{2}=\tilde{\boldsymbol{\theta}}_{2}$, that is the parameters that characterize the variance-covariance structure of the model's error term $\boldsymbol{\varepsilon}$, are identified. Because this implies $\boldsymbol{\varphi}=\mathbf{0}$, it follows that the only general solution of the entire system of moments implies $\boldsymbol{\theta}_{1}=\tilde{\boldsymbol{\theta}}_{1}$ and $\boldsymbol{\xi}=\tilde{\boldsymbol{\xi}}$, and such a solution always exists, i.e. the model's structure is globally identified.

To proceed with our argument, it is convenient to express the value of $\left(\boldsymbol{\theta}_{1}-\tilde{\boldsymbol{\theta}}_{1}\right)$ at the solution postulated by (A.7) as a linear function of $(\sigma-\tilde{\sigma})$ and $\left(\boldsymbol{\theta}_{2}-\tilde{\boldsymbol{\theta}}_{2}\right)$:

$$
\begin{align*}
\left(\boldsymbol{\theta}_{1}-\tilde{\boldsymbol{\theta}}_{1}\right)=\boldsymbol{\tau}_{0}^{\sigma}(\sigma-\tilde{\sigma})+\sum_{m=1}^{M} \boldsymbol{\tau}_{m}^{\psi} & \left(\psi_{m}-\tilde{\psi}_{m}\right)+\sum_{a=1}^{A} \boldsymbol{\tau}_{a}^{\phi}\left(\phi_{a}-\tilde{\phi}_{a}\right)+ \\
& +\sum_{m=1}^{M} \sum_{a=1}^{A} \boldsymbol{\tau}_{m a}^{\psi, \phi}\left(\psi_{m}-\tilde{\psi}_{m}\right)\left(\phi_{a}-\tilde{\phi}_{a}\right) \tag{A.8}
\end{align*}
$$

where the vectors expressed as $\boldsymbol{\tau}_{0}, \boldsymbol{\tau}_{m}^{\psi}, \boldsymbol{\tau}_{a}^{\boldsymbol{\phi}}$ and $\boldsymbol{\tau}_{m a}^{\psi, \phi}$ obtain from the development of the algebraic operations over the first $2(1+K)$ rows on the right-hand side of (A.7). More precisely, there are three separate collections of vectors (in addition to $\boldsymbol{\tau}_{0}^{\sigma}$): M vectors expressed as $\boldsymbol{\tau}_{m}^{\psi}, A$ vectors expressed as $\boldsymbol{\tau}_{a}^{\phi}$ and $M A$ vectors expressed as $\boldsymbol{\tau}_{m a}^{\psi, \phi}$. All such collections feature vectors that are mutually linearly independent, because they obtain via (A.6) from conformable linear combinations applied to the elements of the matrices $\Upsilon_{m}^{\psi}, \Upsilon_{a}^{\phi}$ and $\Upsilon_{m a}^{\psi, \phi}$ from (A.3), respectively.

We thus turn our attention to the second block of moments. Write:

$$
\begin{aligned}
\mathbb{E}\left[g_{2, p}(\tilde{\boldsymbol{\theta}})\right]= & \frac{1}{\tilde{\boldsymbol{\sigma}}^{2}} \mathbb{E}\left[\left[\boldsymbol{\Psi}_{A M}^{-1}\left(\tilde{\boldsymbol{\theta}}_{2}\right) \cdot\left(\mathbf{S}_{\tilde{\boldsymbol{x}}}+\mathbf{S}_{\boldsymbol{u}}\right) \cdot\left(\boldsymbol{\theta}_{1}-\tilde{\boldsymbol{\theta}}_{1}\right)+\boldsymbol{\Phi}_{A M}\left(\boldsymbol{\theta}_{2}, \tilde{\boldsymbol{\theta}}_{2}\right) \cdot \boldsymbol{v}\right]^{\mathrm{T}} .\right. \\
& \left.\cdot \mathbf{P}_{p} \cdot\left[\boldsymbol{\Psi}_{A M}^{-1}\left(\tilde{\boldsymbol{\theta}}_{2}\right) \cdot\left(\mathbf{S}_{\tilde{\boldsymbol{x}}}+\mathbf{S}_{\boldsymbol{u}}\right) \cdot\left(\boldsymbol{\theta}_{1}-\tilde{\boldsymbol{\theta}}_{1}\right)+\boldsymbol{\Phi}_{A M}\left(\boldsymbol{\theta}_{2}, \tilde{\boldsymbol{\theta}}_{2}\right) \cdot \boldsymbol{v}\right]\right]- \\
& -\operatorname{Tr}\left(\mathbf{P}_{p}\right)
\end{aligned}
$$

i.e. the expectation of some generic p-th element of the second block, for $p=1, \ldots, P$, expressed as a function of an impostor structure $\tilde{\boldsymbol{\theta}}$. By developing and manipulating the quadratic form inside the expectation, the above can be reformulated as:

$$
\begin{align*}
\mathbb{E}\left[g_{2, p}(\tilde{\boldsymbol{\theta}})\right]= & \left(\boldsymbol{\theta}_{1}-\tilde{\boldsymbol{\theta}}_{1}\right)^{\mathrm{T}} \cdot \boldsymbol{\infty}\left(\boldsymbol{\theta}_{2}, \tilde{\boldsymbol{\theta}}_{2}\right)+\left(\boldsymbol{\theta}_{1}-\tilde{\boldsymbol{\theta}}_{1}\right)^{\mathrm{T}} \cdot \boldsymbol{\Sigma}(\tilde{\boldsymbol{\theta}}) \cdot\left(\boldsymbol{\theta}_{1}-\tilde{\boldsymbol{\theta}}_{1}\right)^{\mathrm{T}}+ \\
+\frac{\boldsymbol{\sigma}^{2}}{\tilde{\sigma}^{2}}[& \left.\operatorname{Tr}\left(\mathbf{P}_{p}\left(\boldsymbol{\Phi}_{A M}\left(\boldsymbol{\theta}_{2}, \tilde{\boldsymbol{\theta}}_{2}\right)-\mathbf{I}\right)\left(\boldsymbol{\Phi}_{A M}\left(\boldsymbol{\theta}_{2}, \tilde{\boldsymbol{\theta}}_{2}\right)-\mathbf{I}\right)^{\mathrm{T}}\right)\right]+ \\
& +\frac{2 \sigma^{2}}{\tilde{\sigma}^{2}}\left[\operatorname{Tr}\left(\mathbf{P}_{p}\left(\boldsymbol{\Phi}_{A M}\left(\boldsymbol{\theta}_{2}, \tilde{\boldsymbol{\theta}}_{2}\right)-\mathbf{I}\right)\right)\right]+\frac{\boldsymbol{\sigma}^{2}-\tilde{\boldsymbol{\sigma}}^{2}}{\tilde{\sigma}^{2}} \operatorname{Tr}\left(\mathbf{P}_{p}\right), \tag{A.9}
\end{align*}
$$

where the following is a square matrix of size $2(1+K)$:

$$
\boldsymbol{\Sigma}(\tilde{\boldsymbol{\theta}}) \equiv \frac{1}{\tilde{\sigma}^{2}} \mathbb{E}\left[\mathbf{S}_{\boldsymbol{u}}^{\mathrm{T}} \boldsymbol{\Psi}_{A M}^{-1}\left(\tilde{\boldsymbol{\theta}}_{2}\right)^{\mathrm{T}} \mathbf{P}_{p} \boldsymbol{\Psi}_{A M}^{-1}\left(\tilde{\boldsymbol{\theta}}_{2}\right) \mathbf{S}_{\boldsymbol{u}}+\mathbf{S}_{\widetilde{\boldsymbol{x}}}^{\mathrm{T}} \boldsymbol{\Psi}_{A M}^{-1}\left(\tilde{\boldsymbol{\theta}}_{2}\right)^{\mathrm{T}} \mathbf{P}_{p} \boldsymbol{\Psi}_{A M}^{-1}\left(\tilde{\boldsymbol{\theta}}_{2}\right) \mathbf{S}_{\widetilde{\boldsymbol{x}}}\right]
$$

which is henceforth written as $\boldsymbol{\Sigma}$ for simplicity, whereas:

$$
\boldsymbol{\oplus}\left(\boldsymbol{\theta}_{2}, \tilde{\boldsymbol{\theta}}_{2}\right) \equiv \frac{2}{\tilde{\sigma}^{2}} \mathbb{E}\left[\mathbf{S}_{\boldsymbol{u}}^{\mathrm{T}} \boldsymbol{\Psi}_{A M}^{-1}\left(\tilde{\boldsymbol{\theta}}_{2}\right)^{\mathrm{T}} \mathbf{P}_{p} \boldsymbol{\Phi}_{A M}\left(\boldsymbol{\theta}_{2}, \tilde{\boldsymbol{\theta}}_{2}\right) \boldsymbol{v}\right],
$$

is a vector of length $2(1+K)$ that, per (A.3), can be developed as:

$$
\begin{align*}
\boldsymbol{\infty}\left(\boldsymbol{\theta}_{2}, \tilde{\boldsymbol{\theta}}_{2}\right)=\boldsymbol{\omega}_{0}+\sum_{m=1}^{M} \boldsymbol{\omega}_{m}^{\psi}\left(\psi_{m}\right. & \left.-\tilde{\psi}_{m}\right)+\sum_{a=1}^{A} \boldsymbol{\omega}_{a}^{\phi}\left(\phi_{a}-\tilde{\phi}_{a}\right)+ \\
& +\sum_{m=1}^{M} \sum_{a=1}^{A} \boldsymbol{\omega}_{m a}^{\psi, \phi}\left(\psi_{m}-\tilde{\psi}_{m}\right)\left(\phi_{a}-\tilde{\phi}_{a}\right), \tag{A.10}
\end{align*}
$$

where the $1+M+A+M A$ vectors expressed above as $\boldsymbol{\omega}_{0}, \boldsymbol{\omega}_{m}^{\psi}, \boldsymbol{\omega}_{a}^{\phi}$ and $\boldsymbol{\omega}_{m a}^{\psi, \phi}$ are such that, for all $m=1, \ldots, M$ and $a=1, \ldots, A$: 1 . their first elements are all zeroes: $\omega_{0,1}=\omega_{m, 1}^{\psi}=\omega_{a, 1}^{\phi}=\omega_{m a, 1}^{\psi, \phi}=0 ; 2$. their second elements are expressed as:

$$
\begin{aligned}
\omega_{0,2} & =\frac{2 \sigma^{2}}{\tilde{\sigma}^{2}} \operatorname{Tr}\left(\boldsymbol{\Xi}^{\mathrm{T}} \boldsymbol{\Psi}_{A M}^{-1}\left(\tilde{\boldsymbol{\theta}}_{2}\right)^{\mathrm{T}} \mathbf{P}_{p}\right) \\
\omega_{m, 2}^{\psi} & =\frac{2 \sigma^{2}}{\tilde{\sigma}^{2}} \operatorname{Tr}\left(\boldsymbol{\Xi}^{\mathrm{T}} \boldsymbol{\Psi}_{A M}^{-1}\left(\tilde{\boldsymbol{\theta}}_{2}\right)^{\mathrm{T}} \mathbf{P}_{p} \boldsymbol{\Upsilon}_{m}^{\psi}\right) \\
\omega_{a, 2}^{\phi} & =\frac{2 \sigma^{2}}{\tilde{\sigma}^{2}} \operatorname{Tr}\left(\boldsymbol{\Xi}^{\mathrm{T}} \boldsymbol{\Psi}_{A M}^{-1}\left(\tilde{\boldsymbol{\theta}}_{2}\right)^{\mathrm{T}} \mathbf{P}_{p} \boldsymbol{\Upsilon}_{a}^{\phi}\right) \\
\omega_{m a, 2}^{\psi, \phi} & =\frac{2 \sigma^{2}}{\tilde{\sigma}^{2}} \operatorname{Tr}\left(\boldsymbol{\Xi}^{\mathrm{T}} \boldsymbol{\Psi}_{A M}^{-1}\left(\tilde{\boldsymbol{\theta}}_{2}\right)^{\mathrm{T}} \mathbf{P}_{p} \boldsymbol{\Upsilon}_{m a}^{\psi, \phi}\right)
\end{aligned}
$$

and 3. all other elements are expressed as follows, for $q=1,2$ and $k=1, \ldots, K$:

$$
\begin{aligned}
& \omega_{0,2+(q-1) K+k}=\frac{2 \sigma^{2} \xi_{k}}{\tilde{\sigma}^{2}} \operatorname{Tr}\left(\left(\mathbf{G}^{q-1} \mathbf{C}_{k}\right)^{\mathrm{T}} \boldsymbol{\Psi}_{A M}^{-1}\left(\tilde{\boldsymbol{\theta}}_{2}\right)^{\mathrm{T}} \mathbf{P}_{p}\right) \\
& \omega_{m, 2+(q-1) K+k}^{\psi}=\frac{2 \sigma^{2} \xi_{k}}{\tilde{\boldsymbol{\sigma}}^{2}} \operatorname{Tr}\left(\left(\mathbf{G}^{q-1} \mathbf{C}_{k}\right)^{\mathrm{T}} \boldsymbol{\Psi}_{A M}^{-1}\left(\tilde{\boldsymbol{\theta}}_{2}\right)^{\mathrm{T}} \mathbf{P}_{p} \boldsymbol{\Upsilon}_{m}^{\psi}\right) \\
& \omega_{a, 2+(q-1) K+k}^{\phi}=\frac{2 \sigma^{2} \xi_{k}}{\tilde{\boldsymbol{\sigma}}^{2}} \operatorname{Tr}\left(\left(\mathbf{G}^{q-1} \mathbf{C}_{k}\right)^{\mathrm{T}} \boldsymbol{\Psi}_{A M}^{-1}\left(\tilde{\boldsymbol{\theta}}_{2}\right)^{\mathrm{T}} \mathbf{P}_{p} \boldsymbol{\Upsilon}_{a}^{\phi}\right) \\
& \omega_{m a, 2+(q-1) K+k}^{\boldsymbol{\psi}, \phi}=\frac{2 \sigma^{2} \xi_{k}}{\tilde{\boldsymbol{\sigma}}^{2}} \operatorname{Tr}\left(\left(\mathbf{G}^{q-1} \mathbf{C}_{k}\right)^{\mathrm{T}} \boldsymbol{\Psi}_{A M}^{-1}\left(\tilde{\boldsymbol{\theta}}_{2}\right)^{\mathrm{T}} \mathbf{P}_{p} \boldsymbol{\Upsilon}_{m a}^{\psi, \phi}\right) .
\end{aligned}
$$

The vectors $\boldsymbol{\omega}_{0}, \boldsymbol{\omega}_{m}^{\psi}, \boldsymbol{\omega}_{a}^{\phi}$ and $\boldsymbol{\omega}_{m a}^{\psi, \phi}$ too inherit the mutual independence properties of the matrices $\boldsymbol{\Upsilon}_{0}, \mathbf{\Upsilon}_{m}^{\psi}, \boldsymbol{\Upsilon}_{a}^{\boldsymbol{\phi}}$ and $\boldsymbol{\Upsilon}_{m a}^{\psi, \phi}$, as revealed by an inspection of their elements' expressions that are developed above.

Plugging (A.3), (A.8) and (A.10) into (A.9) yields the following polynomial:

$$
\begin{aligned}
& \mathbb{E}\left[g_{2, p}\left(\boldsymbol{\theta}_{2}, \tilde{\boldsymbol{\theta}}_{2}\right)\right]=\left(\sigma^{2}-\tilde{\sigma}^{2}\right) \frac{\operatorname{Tr}\left(\mathbf{P}_{p}\right)}{\tilde{\sigma}^{2}}+(\sigma-\tilde{\sigma}) \boldsymbol{\omega}_{0}^{\mathrm{T}} \boldsymbol{\tau}_{0}^{\sigma}+(\sigma-\tilde{\sigma})^{2}\left(\boldsymbol{\tau}_{0}^{\sigma}\right)^{\mathrm{T}} \boldsymbol{\Sigma} \boldsymbol{\tau}_{0}^{\sigma} \\
& +\sum_{m=1}^{M}\left(\tilde{\psi}_{m}-\psi_{m}\right) \varsigma_{m}^{\psi}+\sum_{m=1}^{M}\left(\tilde{\psi}_{m}-\psi_{m}\right)(\sigma-\tilde{\sigma}) \varsigma_{m}^{\psi \sigma} \\
& +\sum_{a=1}^{A}\left(\tilde{\phi}_{a}-\phi_{a}\right) \varsigma_{a}^{\phi}+\sum_{a=1}^{A}\left(\tilde{\phi}_{a}-\phi_{a}\right)(\sigma-\tilde{\sigma}) \varsigma_{a}^{\phi \sigma} \\
& +\sum_{m=1}^{M} \sum_{a=1}^{A}\left(\tilde{\psi}_{m}-\psi_{m}\right)\left(\tilde{\phi}_{a}-\phi_{a}\right) \varsigma_{m a}^{\psi \phi}+\sum_{m=1}^{M} \sum_{a=1}^{A}\left(\tilde{\psi}_{m}-\psi_{m}\right)\left(\tilde{\phi}_{a}-\phi_{a}\right)(\sigma-\tilde{\sigma}) \varsigma_{m a}^{\psi \phi \sigma} \\
& +\sum_{m_{1}=1}^{M} \sum_{m_{2}=1}^{M}\left(\tilde{\psi}_{m_{1}}-\psi_{m_{1}}\right)\left(\tilde{\psi}_{m_{2}}-\psi_{m_{2}}\right) \varsigma_{m_{1} m_{2}}^{\psi^{2}}+\sum_{a_{1}=1}^{A} \sum_{a_{2}=1}^{A}\left(\tilde{\phi}_{a_{1}}-\phi_{a_{1}}\right)\left(\tilde{\phi}_{a_{2}}-\phi_{a_{2}}\right) \varsigma_{a_{1} a_{2}}^{\phi^{2}} \\
& +\sum_{m_{1}=1}^{M} \sum_{m_{2}=1}^{M} \sum_{a=1}^{A}\left(\tilde{\psi}_{m_{1}}-\psi_{m_{1}}\right)\left(\tilde{\psi}_{m_{2}}-\psi_{m_{2}}\right)\left(\tilde{\phi}_{a}-\phi_{a}\right) \varsigma_{m_{1} m_{2} a}^{\psi^{2}} \\
& +\sum_{m=1}^{M} \sum_{a_{1}=1}^{A} \sum_{a_{2}=1}^{A}\left(\tilde{\psi}_{m}-\psi_{m}\right)\left(\tilde{\phi}_{a_{1}}-\phi_{a_{1}}\right)\left(\tilde{\phi}_{a_{2}}-\phi_{a_{2}}\right) \varsigma_{m a_{1} a_{2}}^{\psi \phi^{2}} \\
& +\sum_{m_{1}=1}^{M} \sum_{m_{2}=1}^{M} \sum_{a_{1}=1}^{A} \sum_{a_{2}=1}^{A}\left(\tilde{\psi}_{m_{1}}-\psi_{m_{1}}\right)\left(\tilde{\psi}_{m_{2}}-\psi_{m_{2}}\right)\left(\tilde{\phi}_{a_{1}}-\phi_{a_{1}}\right)\left(\tilde{\phi}_{a_{2}}-\phi_{a_{2}}\right) \varsigma_{m_{1} \psi_{2} a_{1} a_{2}}^{\psi_{2}^{2}}
\end{aligned}
$$

The coefficients denoted above as ς (along with indices and suffixes) are as follows:

$$
\begin{aligned}
\varsigma_{m}^{\psi} & =\frac{2 \sigma^{2}}{\tilde{\sigma}^{2}} \operatorname{Tr}\left(\mathbf{P}_{p} \boldsymbol{\Upsilon}_{m}^{\psi}\right)+\boldsymbol{\omega}_{0}^{\mathrm{T}} \boldsymbol{\tau}_{m}^{\psi} \\
\varsigma_{a}^{\phi} & =\frac{2 \sigma^{2}}{\tilde{\sigma}^{2}} \operatorname{Tr}\left(\mathbf{P}_{p} \boldsymbol{\Upsilon}_{a}^{\phi}\right)+\boldsymbol{\omega}_{0}^{\mathrm{T}} \boldsymbol{\tau}_{a}^{\phi}
\end{aligned}
$$

$$
\begin{aligned}
& \varsigma_{m}^{\psi \sigma}=\left(\boldsymbol{\omega}_{m}^{\psi}\right)^{\mathrm{T}} \boldsymbol{\tau}_{0}^{\sigma}+2\left(\boldsymbol{\tau}_{m}^{\psi}\right)^{\mathrm{T}} \boldsymbol{\Sigma} \boldsymbol{\tau}_{0}^{\sigma} \\
& \varsigma_{a}^{\phi \sigma}=\left(\boldsymbol{\omega}_{a}^{\phi}\right)^{\mathrm{T}} \boldsymbol{\tau}_{0}^{\sigma}+2\left(\boldsymbol{\tau}_{a}^{\phi}\right)^{\mathrm{T}} \boldsymbol{\Sigma} \boldsymbol{\tau}_{0}^{\sigma} \\
& \varsigma_{m a}^{\psi \phi}=\frac{\sigma^{2}}{\tilde{\sigma}^{2}}\left[\operatorname{Tr}\left(\mathbf{P}_{p} \boldsymbol{\Upsilon}_{m}^{\psi} \mathbf{\Upsilon}_{a}^{\phi}\right)+\operatorname{Tr}\left(\mathbf{P}_{p} \mathbf{\Upsilon}_{a}^{\phi} \mathbf{\Upsilon}_{m}^{\psi}\right)\right]+\frac{2 \sigma^{2}}{\tilde{\sigma}^{2}} \operatorname{Tr}\left(\mathbf{P}_{p} \boldsymbol{\Upsilon}_{m a}^{\psi, \phi}\right)+ \\
& +\boldsymbol{\omega}_{0}^{\mathrm{T}} \boldsymbol{\tau}_{m a}^{\psi, \phi}+\left(\boldsymbol{\omega}_{m}^{\psi}\right)^{\mathrm{T}} \boldsymbol{\tau}_{a}^{\phi}+\left(\boldsymbol{\omega}_{a}^{\phi}\right)^{\mathrm{T}} \boldsymbol{\tau}_{m}^{\psi}+2\left(\boldsymbol{\tau}_{m}^{\boldsymbol{\psi}}\right)^{\mathrm{T}} \boldsymbol{\Sigma} \boldsymbol{\tau}_{a}^{\phi} \\
& \varsigma_{m a}^{\psi \phi \sigma}=\left(\boldsymbol{\omega}_{m a}^{\psi, \phi}\right)^{\mathrm{T}} \boldsymbol{\tau}_{0}^{\sigma}+2\left(\boldsymbol{\tau}_{m a}^{\psi, \phi}\right)^{\mathrm{T}} \boldsymbol{\Sigma} \boldsymbol{\tau}_{0}^{\sigma} \\
& \varsigma_{m_{1} m_{2}}^{\psi^{2}}=\frac{\sigma^{2}}{\tilde{\sigma}^{2}} \operatorname{Tr}\left(\mathbf{P}_{p} \boldsymbol{\Upsilon}_{m_{1}}^{\psi} \boldsymbol{\Upsilon}_{m_{2}}^{\psi}\right)+\left(\boldsymbol{\omega}_{m_{1}}^{\psi}\right)^{\mathrm{T}} \boldsymbol{\tau}_{m_{2}}^{\psi}+\left(\boldsymbol{\tau}_{m_{1}}^{\psi}\right)^{\mathrm{T}} \boldsymbol{\Sigma} \boldsymbol{\tau}_{m_{2}}^{\psi} \\
& \varsigma_{a_{1} a_{2}}^{\phi^{2}}=\frac{\sigma^{2}}{\tilde{\sigma}^{2}} \operatorname{Tr}\left(\mathbf{P}_{p} \boldsymbol{\Upsilon}_{a_{1}}^{\phi} \mathbf{\Upsilon}_{a_{2}}^{\phi}\right)+\left(\boldsymbol{\omega}_{a_{1}}^{\psi}\right)^{\mathrm{T}} \boldsymbol{\tau}_{a_{2}}^{\phi}+\left(\boldsymbol{\tau}_{a_{1}}^{\phi}\right)^{\mathrm{T}} \boldsymbol{\Sigma} \boldsymbol{\tau}_{a_{2}}^{\phi} \\
& \varsigma_{m_{1} m_{2} a}^{\psi^{2} \phi}=\frac{\sigma^{2}}{\tilde{\sigma}^{2}}\left[\operatorname{Tr}\left(\mathbf{P}_{p} \boldsymbol{\Upsilon}_{m_{1} a}^{\psi, \phi} \mathbf{\Upsilon}_{m_{2}}^{\psi}\right)+\operatorname{Tr}\left(\mathbf{P}_{p} \boldsymbol{\Upsilon}_{m_{1}}^{\psi} \boldsymbol{\Upsilon}_{m_{2} a}^{\psi, \phi}\right)\right]+ \\
& +\left(\boldsymbol{\omega}_{m_{1}}^{\psi}\right)^{\mathrm{T}} \boldsymbol{\tau}_{m_{2} a}^{\psi, \phi}+\left(\boldsymbol{\omega}_{m_{1} a}^{\psi, \phi}\right)^{\mathrm{T}} \boldsymbol{\tau}_{m_{2}}^{\psi}+2\left(\boldsymbol{\tau}_{m_{1} a}^{\psi, \phi}\right)^{\mathrm{T}} \boldsymbol{\Sigma} \boldsymbol{\tau}_{m_{2}}^{\psi} \\
& \varsigma_{m a_{1} a_{2}}^{\psi \phi^{2}}=\frac{\sigma^{2}}{\tilde{\sigma}^{2}}\left[\operatorname{Tr}\left(\mathbf{P}_{p} \boldsymbol{\Upsilon}_{m a_{1}}^{\psi, \phi} \mathbf{\Upsilon}_{a_{2}}^{\phi}\right)+\operatorname{Tr}\left(\mathbf{P}_{p} \mathbf{\Upsilon}_{a_{1}}^{\phi} \mathbf{\Upsilon}_{m a_{2}}^{\psi, \phi}\right)\right]+ \\
& +\left(\boldsymbol{\omega}_{a_{1}}^{\phi}\right)^{\mathrm{T}} \boldsymbol{\tau}_{m a_{2}}^{\psi, \phi}+\left(\boldsymbol{\omega}_{m a_{1}}^{\psi, \phi}\right)^{\mathrm{T}} \boldsymbol{\tau}_{a_{2}}^{\phi}+2\left(\boldsymbol{\tau}_{m a_{1}}^{\psi, \phi}\right)^{\mathrm{T}} \boldsymbol{\Sigma} \boldsymbol{\tau}_{a_{2}}^{\phi} \\
& \varsigma_{m_{1} m_{2} a_{1} a_{2}}^{\psi^{2}}=\frac{\sigma^{2}}{\tilde{\sigma}^{2}} \operatorname{Tr}\left(\mathbf{P}_{p} \boldsymbol{\Upsilon}_{m_{1} a_{1}}^{\psi, \phi}\left(\mathbf{\Upsilon}_{m_{2} a_{2}}^{\psi, \boldsymbol{\phi}}\right)^{\mathrm{T}}\right)+\left(\boldsymbol{\omega}_{m_{1} a_{1}}^{\psi, \phi}\right)^{\mathrm{T}} \boldsymbol{\tau}_{m_{2} a_{2}}^{\psi, \phi}+\left(\boldsymbol{\tau}_{m_{1} a_{1}}^{\psi, \phi}\right)^{\mathrm{T}} \boldsymbol{\Sigma} \boldsymbol{\tau}_{m_{2} a_{2}}^{\psi, \boldsymbol{\phi}} .
\end{aligned}
$$

By condition (iii) of the Theorem (linear independence of the \mathbf{P}_{p} matrices) and per the considerations made thus far, the polynomial coefficients are linearly independent across the expectations of all P second order moments. Hence, the only solution that sets all these expectations at zero has $\tilde{\sigma}=\sigma$ and $\tilde{\boldsymbol{\theta}}_{2}=\boldsymbol{\theta}_{2}$. This completes the proof.

Proof of Theorem 2

In this proof, we denote by $\mathbf{x}_{k, N}^{*}$ the k-th column of \mathbf{X}_{N} for $k=1, \ldots, K$; its expected value $\mathbb{E}\left[\mathbf{x}_{k, N}\right]=\mathbb{E}\left[\widetilde{\mathbf{x}}_{k, N}^{*}\right]$, where $\widetilde{\mathbf{x}}_{k, N}$ is defined in Assumption 6 , corresponds with the k-th column of $\mathbb{E}\left[\mathbf{X}_{N}\right]$. We also write the unconditional expected value of \mathbf{y}_{N} as:

$$
\mathbb{E}\left[\mathbf{y}_{N}\right]=\left(\mathbf{I}_{N}-\beta_{0} \mathbf{G}_{N}\right)^{-1}\left(\alpha_{0} \mathbf{l}_{N}+\mathbb{E}\left[\mathbf{X}_{N}\right] \boldsymbol{\gamma}_{0}+\mathbf{G}_{N} \mathbb{E}\left[\mathbf{X}_{N}\right] \boldsymbol{\delta}_{0}\right) .
$$

We also introduce some more auxiliary notation. Let $\widetilde{\mathbf{G}}_{N}(\beta) \equiv \mathbf{G}_{N}\left(\mathbf{I}_{N}-\beta \mathbf{G}_{N}\right)^{-1}$, and define the following vectors:

$$
\begin{aligned}
\mathbf{d}_{N}(\boldsymbol{\theta}) \equiv\left(\boldsymbol{\alpha}_{0}-\alpha\right) \mathbf{l}_{N}+\left(\beta_{0}-\beta\right) \mathbf{G}_{N} \mathbb{E}\left[\mathbf{y}_{N}\right]+\mathbb{E}\left[\mathbf{X}_{N}\right]\left(\boldsymbol{\gamma}_{0}-\boldsymbol{\gamma}\right)+\mathbf{G}_{N} \mathbb{E}\left[\mathbf{X}_{N}\right]\left(\boldsymbol{\delta}_{0}-\boldsymbol{\delta}\right), \\
\mathbf{e}_{N}(\boldsymbol{\theta}) \equiv \boldsymbol{\varepsilon}_{N}+\left(\mathbf{X}_{N}-\mathbb{E}\left[\mathbf{X}_{N}\right]\right)\left(\boldsymbol{\gamma}_{0}-\boldsymbol{\gamma}\right)+\mathbf{G}_{N}\left(\mathbf{X}_{N}-\mathbb{E}\left[\mathbf{X}_{N}\right]\right)\left(\boldsymbol{\delta}_{0}-\boldsymbol{\delta}\right) \\
\quad+\left(\beta_{0}-\beta\right) \widetilde{\mathbf{G}}_{N}\left(\beta_{0}\right)\left[\boldsymbol{\varepsilon}_{N}+\left(\mathbf{X}_{N}-\mathbb{E}\left[\mathbf{X}_{N}\right]\right) \boldsymbol{\gamma}_{0}+\mathbf{G}_{N}\left(\mathbf{X}_{N}-\mathbb{E}\left[\mathbf{X}_{N}\right]\right) \boldsymbol{\delta}_{0}\right] .
\end{aligned}
$$

Observe that $\varepsilon_{N}(\boldsymbol{\theta})=\mathbf{d}_{N}(\boldsymbol{\theta})+\mathbf{e}_{N}(\boldsymbol{\theta})$. Furthermore, the following K matrices will be helpful throughout:

$$
\boldsymbol{\Gamma}_{k, 0}(\boldsymbol{\theta}) \equiv\left[\left(\gamma_{k, 0}-\gamma_{k}\right) \mathbf{I}_{N}+\left(\delta_{k, 0}-\delta_{k}\right) \mathbf{G}_{N}+\left(\beta_{0}-\beta\right) \widetilde{\mathbf{G}}_{N}\left(\beta_{0}\right)\left(\gamma_{k, 0} \mathbf{I}_{N}+\delta_{k, 0} \mathbf{G}_{N}\right)\right],
$$

where $k=1, \ldots, K$. Finally, observe that the GMM weighting matrix \mathbf{W}_{N} can be written as:

$$
\mathbf{W}_{N}=\mathbf{A}_{N}^{\mathrm{T}} \mathbf{A}_{N},
$$

where \mathbf{A}_{N} is a square matrix of dimension $1+Q K+P$ and such that $\mathbf{A}_{N} \xrightarrow{p} \mathbf{A}_{0}$ and $\operatorname{rank}\left(\mathbf{A}_{N}\right) \geq \operatorname{dim}|\boldsymbol{\theta}|$, where $\mathbf{A}_{0}^{\mathrm{T}} \mathbf{A}_{0}=\mathbf{W}_{0}$. This implies that the vector $\mathbf{A}_{N} \mathbf{m}_{N}(\boldsymbol{\theta})$ can be decomposed as:

$$
\begin{array}{r}
\frac{1}{N} \mathbf{A}_{N} \mathbf{m}_{N}(\boldsymbol{\theta})=\frac{1}{N} a_{1, N} \mathbf{t}_{N}^{\mathrm{T}}+\frac{1}{N}\left[\sum_{q=1}^{Q} \sum_{k=1}^{K} a_{1+(q-1) K+k, N} \mathbf{q}_{q k, N}\right. \tag{A.11}\\
\left.+\sum_{p=1}^{P} a_{1+Q K+p, N} \boldsymbol{\varepsilon}_{N}^{\mathrm{T}}(\boldsymbol{\theta}) \mathbf{P}_{p, N}\right] \boldsymbol{\varepsilon}_{N}(\boldsymbol{\theta})
\end{array}
$$

where the $1+Q K+P$ elements written as $a_{., N}$ are appropriate combinations of the elements of \mathbf{A}_{N}. Our main proof of consistency is based on this decomposition; later we refer to the "first" and the "second" element of (A.11) as the two summations laid out within brackets respectively in the first and second line of the above display.

Before we get to the proof proper, one final preparatory step is useful. We later further decompose the elements of (A.11) into smaller bits, through some auxiliary vectors and matrices; it is helpful to introduce these arrays immediately. They are: (i) some $K(1+K)$ matrices, which are written as $\mathbf{R}_{k, N}^{*}(\boldsymbol{\theta})$ and $\mathbf{R}_{k k^{\prime}, N}^{*}(\boldsymbol{\theta})$, and are indexed by $k, k^{\prime}=1, \ldots, K$:

$$
\begin{aligned}
\mathbf{R}_{k, N}^{*}(\boldsymbol{\theta}) & \equiv \sum_{q=1}^{Q} \mathbf{G}_{N}^{q-1} a_{1+q k, N}\left[\mathbf{I}_{N}+\left(\beta_{0}-\beta\right) \widetilde{\mathbf{G}}_{N}\left(\beta_{0}\right)\right] \\
\mathbf{R}_{k k^{\prime}, N}^{*}(\boldsymbol{\theta}) & \equiv \sum_{q=1}^{Q} \mathbf{G}_{N}^{q-1} a_{1+q k, N} \boldsymbol{\Gamma}_{k, 0}(\boldsymbol{\theta})
\end{aligned}
$$

(ii) a set of $K+1$ vectors written as $\mathbf{l}_{0, N}^{* *}(\boldsymbol{\theta})$ and as $\mathbf{l}_{k, N}^{* *}(\boldsymbol{\theta})$ for $k=1, \ldots, K$;

$$
\begin{aligned}
& \mathbf{l}_{0, N}^{* *}(\boldsymbol{\theta}) \equiv \mathbf{d}_{N}^{\mathrm{T}}(\boldsymbol{\theta}) \sum_{p=1}^{P} a_{1+Q K+p, N} \mathbf{P}_{p, N}\left[\mathbf{I}_{N}+\left(\beta_{0}-\beta\right) \widetilde{\mathbf{G}}_{N}\left(\beta_{0}\right)\right] \\
& \mathbf{l}_{k, N}^{* *}(\boldsymbol{\theta}) \equiv \mathbf{d}_{N}^{\mathrm{T}}(\boldsymbol{\theta}) \sum_{p=1}^{P} a_{1+Q K+p, N} \mathbf{P}_{p, N} \boldsymbol{\Gamma}_{k, 0}(\boldsymbol{\theta}),
\end{aligned}
$$

(iii) another set of $1+K+K^{2}$ matrices, written as $\mathbf{R}_{0, N}^{* *}(\boldsymbol{\theta}), \mathbf{R}_{k, N}^{* *}(\boldsymbol{\theta})$ and $\mathbf{R}_{k k^{\prime}, N}^{* *}(\boldsymbol{\theta})$, and indexed by $k, k^{\prime}=1, \ldots, K$:

$$
\begin{aligned}
\mathbf{R}_{0, N}^{* *}(\boldsymbol{\theta}) & \equiv\left(\mathbf{I}_{N}+\left(\beta_{0}-\beta\right) \widetilde{\mathbf{G}}_{N}^{\mathrm{T}}\left(\beta_{0}\right)\right) \sum_{p=1}^{P} a_{1+Q K+p, N} \mathbf{P}_{p, N}\left(\mathbf{I}_{N}+\left(\beta_{0}-\beta\right) \widetilde{\mathbf{G}}_{N}\left(\beta_{0}\right)\right) \\
\mathbf{R}_{k, N}^{* *}(\boldsymbol{\theta}) & \equiv\left(\mathbf{I}_{N}+\left(\beta_{0}-\beta\right) \widetilde{\mathbf{G}}_{N}^{\mathrm{T}}\left(\beta_{0}\right)\right) \sum_{p=1}^{P} a_{1+Q K+p, N}\left(\mathbf{P}_{p, N}+\mathbf{P}_{p, N}^{\mathrm{T}}\right) \boldsymbol{\Gamma}_{k, 0}(\boldsymbol{\theta}) \\
\mathbf{R}_{k k^{\prime}, N}^{* *}(\boldsymbol{\theta}) & \equiv \boldsymbol{\Gamma}_{k^{\prime}, 0}^{\mathrm{T}}(\boldsymbol{\theta})\left[\sum_{p=1}^{P} a_{1+Q K+p, N} \mathbf{P}_{p, N}\right] \boldsymbol{\Gamma}_{k, 0}(\boldsymbol{\theta}) .
\end{aligned}
$$

We now proceed to our main argument. In order to establish consistency of $\widehat{\boldsymbol{\theta}}_{G M M}$, it is necessary to show uniform convergence in probability for all the elements that comprise the vector $\mathbf{A}_{N} \mathbf{m}_{N}(\boldsymbol{\theta})$. Consider the first element in brackets in (A.11):

$$
\begin{aligned}
\sum_{q=1}^{Q} \sum_{k=1}^{K} a_{1+(q-1) K+k, N} \mathbf{q}_{q k, N} \boldsymbol{\varepsilon}_{N}(\boldsymbol{\theta})= & \underbrace{\sum_{q=1}^{Q} \sum_{k=1}^{K} a_{1+(q-1) K+k, N}\left(\mathbf{G}_{N}^{q-1} \mathbf{x}_{k, N}^{*}\right)^{\mathrm{T}} \mathbf{d}_{N}(\boldsymbol{\theta})}_{\equiv l_{N}^{*}(\boldsymbol{\theta})} \\
& +\underbrace{\sum_{q=1}^{Q} \sum_{k=1}^{K} a_{1+(q-1) K+q, N}\left(\mathbf{G}_{N}^{q-1} \mathbf{x}_{k, N}^{*}\right)^{\mathrm{T}} \mathbf{e}_{N}(\boldsymbol{\theta})}_{\equiv r_{N}^{*}(\boldsymbol{\theta})},
\end{aligned}
$$

where $l_{N}^{*}(\boldsymbol{\theta})$ is given by:

$$
\frac{1}{N} l_{N}^{*}(\boldsymbol{\theta})=\frac{1}{N} \sum_{q=1}^{Q} \sum_{k=1}^{K} a_{1+(q-1) K+k, N}\left(\mathbf{G}_{N}^{q-1} \mathbb{E}\left[\mathbf{x}_{k, N}^{*}\right]\right)^{\mathrm{T}} \mathbf{d}_{N}^{\mathrm{T}}(\boldsymbol{\theta})+o_{P}(1)
$$

while $r_{N}^{*}(\boldsymbol{\theta})$ can be expressed as a function of the $\mathbf{R}_{k, N}^{*}(\boldsymbol{\theta})$ and $\mathbf{R}_{k k^{\prime}, N}^{*}(\boldsymbol{\theta})$ matrices defined above (note: the second line continues on the next page):

$$
\begin{aligned}
\frac{1}{N} r_{N}^{*}(\boldsymbol{\theta})= & \frac{1}{N} \sum_{k=1}^{K}\left(\mathbf{x}_{k, N}^{*}-\mathbb{E}\left[\mathbf{x}_{k, N}^{*}\right]\right)^{\mathrm{T}} \mathbf{R}_{k, N}^{*}(\boldsymbol{\theta})\left(\mathbf{x}_{k, N}^{*}-\mathbb{E}\left[\mathbf{x}_{k, N}^{*}\right]\right) \\
& +\frac{1}{N} \sum_{k=1}^{K} \sum_{k^{\prime}=1}^{K}\left(\mathbf{x}_{k^{\prime}, N}^{*}-\mathbb{E}\left[\mathbf{x}_{k^{\prime}, N}^{*}\right]\right)^{\mathrm{T}} \mathbf{R}_{k, k^{\prime}, N}^{*}(\boldsymbol{\theta}) \boldsymbol{\varepsilon}_{N} \\
= & \sigma_{0}^{2} \frac{1}{N} \sum_{k=1}^{K} \xi_{0, k} \operatorname{Tr}\left(\mathbf{C}_{k, N}^{\mathrm{T}} \mathbf{R}_{k, N}^{*}(\boldsymbol{\theta})\left(\mathbf{I}_{N}+\psi_{0} \mathbf{E}_{N}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{N} \sum_{k=1}^{K} \sum_{k^{\prime}=1}^{K} \xi_{0, k} \xi_{0, k^{\prime}} \operatorname{Tr}\left(\mathbf{C}_{k, N}^{\mathrm{T}} \mathbf{R}_{k, k^{\prime}, N}^{*}(\boldsymbol{\theta}) \mathbf{C}_{k, N}\right) \\
& +\frac{1}{N} \sum_{k=1}^{K} \sum_{k^{\prime}=1}^{K} \Xi_{k k^{\prime}} \cdot \operatorname{Tr}\left(\mathbf{R}_{k, k^{\prime}, N}^{*}(\boldsymbol{\theta})\right)+o_{P}(1)
\end{aligned}
$$

Similarly, the second term in brackets in (A.11) can be decomposed as:

$$
\begin{array}{r}
\sum_{p=1}^{P} a_{1+Q K+p, N} \boldsymbol{\varepsilon}_{N}^{\mathrm{T}}(\boldsymbol{\theta}) \mathbf{P}_{p, N} \boldsymbol{\varepsilon}_{N}(\boldsymbol{\theta})=\sum_{p=1}^{P} a_{1+Q K+p, N} \mathbf{d}_{N}^{\mathrm{T}}(\boldsymbol{\theta}) \mathbf{P}_{p, N} \mathbf{d}_{N}(\boldsymbol{\theta}) \\
+2 \underbrace{\sum_{p=1}^{P} a_{1+Q K+p, N} \mathbf{d}_{N}^{\mathrm{T}}(\boldsymbol{\theta}) \mathbf{P}_{p, N} \mathbf{e}_{N}(\boldsymbol{\theta})}_{\equiv l_{N}^{* *}(\boldsymbol{\theta})}+\underbrace{\sum_{p=1}^{P} a_{1+Q K+p, N} \mathbf{e}_{N}^{\mathrm{T}}(\boldsymbol{\theta}) \mathbf{P}_{p, N} \mathbf{e}_{N}(\boldsymbol{\theta})}_{\equiv r_{N}^{* *}(\boldsymbol{\theta})},
\end{array}
$$

where $l_{N}^{* *}(\boldsymbol{\theta})$ is written in terms of $\mathbf{l}_{0, N}^{* *}(\boldsymbol{\theta})$ and $\mathbf{l}_{k, N}^{* *}(\boldsymbol{\theta})$:

$$
\frac{1}{N} l_{N}^{* *}(\boldsymbol{\theta})=\frac{1}{N} \mathbf{l}_{0, N}(\boldsymbol{\theta}) \varepsilon_{N}+\frac{1}{N} \sum_{k=1}^{K} \mathbf{l}_{k, N}(\boldsymbol{\theta})\left(\mathrm{x}_{k, N}^{*}-\mathbb{E}\left[\mathbf{x}_{k, N}^{*}\right]\right)=o_{P}(1)
$$

while the term $r_{N}^{* *}(\boldsymbol{\theta})$ can be related to $\mathbf{R}_{0, N}^{* *}(\boldsymbol{\theta}), \mathbf{R}_{k, N}^{* *}(\boldsymbol{\theta})$ and $\mathbf{R}_{k k^{\prime}, N}^{* *}(\boldsymbol{\theta})$:

$$
\begin{aligned}
\frac{1}{N} r_{N}^{* *}(\boldsymbol{\theta})= & \frac{1}{N} \varepsilon_{N}^{\mathrm{T}} \mathbf{R}_{0, N}^{* *}(\boldsymbol{\theta}) \boldsymbol{\varepsilon}_{N}+\frac{1}{N} \sum_{k=1}^{K} \boldsymbol{\varepsilon}_{N}^{\mathrm{T}} \mathbf{R}_{k, N}^{* *}(\boldsymbol{\theta})\left(\mathbf{x}_{k, N}^{*}-\mathbb{E}\left[\mathbf{x}_{k, N}^{*}\right]\right) \\
& +\frac{1}{N} \sum_{k^{\prime}=1}^{K}\left(\mathbf{x}_{k^{\prime}, N}^{*}-\mathbb{E}\left[\mathbf{x}_{k^{\prime}, N}^{*}\right]\right)^{\mathrm{T}} \mathbf{R}_{k, k^{\prime}, N}^{* *}(\boldsymbol{\theta})\left(\mathbf{x}_{k, N}^{*}-\mathbb{E}\left[\mathbf{x}_{k, N}^{*}\right]\right) \\
= & \sigma_{0}^{2} \frac{1}{N} \operatorname{Tr}\left(\left(\mathbf{I}_{N}+\psi_{0} \mathbf{E}_{N}\right)^{\mathrm{T}} \mathbf{R}_{0, N}^{* *}(\boldsymbol{\theta})\left(\mathbf{I}_{N}+\psi_{0} \mathbf{E}_{N}\right)\right) \\
& +\frac{1}{N} \sum_{k=1}^{K} \sigma_{0}^{2} \xi_{0, k} \operatorname{Tr}\left(\left(\mathbf{I}_{N}+\psi_{0} \mathbf{E}_{N}\right)^{\mathrm{T}} \mathbf{R}_{k, N}^{* *}(\boldsymbol{\theta}) \mathbf{C}_{k, N}\right) \\
& +\frac{1}{N} \sum_{k=1}^{K} \sum_{k^{\prime}=1}^{K} \sigma_{0}^{2} \xi_{0, k} \xi_{0, k^{\prime}} \operatorname{Tr}\left(\mathbf{C}_{k, N}^{\mathrm{T}} \mathbf{R}_{k, k^{\prime}, N}^{* *}(\boldsymbol{\theta}) \mathbf{C}_{k, N}\right) \\
& +\frac{1}{N} \sum_{k=1}^{K} \sum_{k^{\prime}=1}^{K} \Xi_{k k^{\prime}} \cdot \operatorname{Tr}\left(\mathbf{R}_{k, k^{\prime}, N}^{* *}(\boldsymbol{\theta})\right)+o_{P}(1)
\end{aligned}
$$

Note that $N^{-1} \iota^{\mathrm{T}}\left\{\mathbf{x}_{k, N}^{*}-\mathbb{E}\left[\mathbf{x}_{k, N}^{*}\right]\right\}=o_{P}(1)$ for $k=1, \ldots, K$ uniformly in $\boldsymbol{\theta} \in \boldsymbol{\Theta}$ by Lemmas A. 3 and A. 4 in Lee (2007a). Since $\boldsymbol{\Theta}$ is bounded and all the terms $l_{N}^{*}(\boldsymbol{\theta})$,
$r_{N}^{*}(\boldsymbol{\theta}), l_{N}^{* *}(\boldsymbol{\theta})$ and $r_{N}^{* *}(\boldsymbol{\theta})$ can be expressed as appropriate functions of the relevant parameters, uniform convergence follows. Since $\mathbf{m}_{N}(\boldsymbol{\theta})$ is also quadratic in $\boldsymbol{\theta}$ and $\boldsymbol{\Theta}$ is bounded, then $\mathbb{E}\left[\mathbf{m}_{N}(\boldsymbol{\theta})\right]$ is uniformly equicontinuous in Θ. This result, along with the identification conditions, implies that the identification uniqueness condition for $\mathbb{E}\left[\mathbf{m}_{N}^{\mathrm{T}}(\boldsymbol{\theta}) \mathbf{A}_{N}^{\mathrm{T}} \mathbf{A}_{N} \mathbf{m}_{N}(\boldsymbol{\theta})\right]$ is satisfied. Thus, the consistency of the GMM estimator follows from standard arguments (White, 1996).

It remains to show that $\widehat{\boldsymbol{\theta}}_{G M M}$ is also asymptotically normal. The usual application of the Mean Value Theorem to the First Order Conditions of the GMM problem gives:

$$
\sqrt{N}\left(\widehat{\boldsymbol{\theta}}_{G M M}-\boldsymbol{\theta}_{0}\right)=-\left[\mathbf{J}_{N}^{\mathrm{T}}\left(\widehat{\boldsymbol{\theta}}_{G M M}\right) \mathbf{W}_{N} \mathbf{J}_{N}(\overline{\boldsymbol{\theta}})\right]^{-1} \mathbf{J}_{N}^{\mathrm{T}}\left(\widehat{\boldsymbol{\theta}}_{G M M}\right) \mathbf{W}_{N} \sqrt{N} \mathbf{m}_{N}\left(\boldsymbol{\theta}_{0}\right)
$$

where $\mathbf{J}_{N}(\boldsymbol{\theta})=\frac{\partial}{\partial \boldsymbol{\theta}} \mathbf{m}_{N}(\boldsymbol{\theta})$. By Theorem 1 in Kelejian and Prucha (2001):

$$
\begin{equation*}
\sqrt{N} \mathbf{A}_{N} \mathbf{m}_{N}\left(\boldsymbol{\theta}_{0}\right) \xrightarrow{d} \mathcal{N}\left(\mathbf{0}, \mathbf{A}_{0} \boldsymbol{\Omega}_{0} \mathbf{A}_{0}^{\mathrm{T}}\right) . \tag{A.12}
\end{equation*}
$$

Hence, the main result would follow if $\mathbf{J}_{N}\left(\widehat{\boldsymbol{\theta}}_{G M M}\right)=\mathbf{J}_{0}+o_{P}(1)$. Note that:

$$
\begin{aligned}
\mathbf{J}_{N}(\boldsymbol{\theta})= & -\frac{1}{N}\left[\begin{array}{c}
\mathbf{Q}_{1, N} \\
\vdots \\
\mathbf{Q}_{Q, N} \\
2 \varepsilon_{N}^{\mathrm{T}}(\boldsymbol{\theta}) \mathbf{P}_{1, N} \\
\vdots \\
2 \varepsilon_{N}^{\mathrm{T}}(\boldsymbol{\theta}) \mathbf{P}_{P, N}
\end{array}\right]\left[\begin{array}{lllllll}
\boldsymbol{\iota}_{N} & \mathbf{G}_{N} \mathbf{y}_{N} & \mathbf{X}_{N} & \mathbf{G}_{N} \mathbf{X}_{N} & \mathbf{0}_{N} & \mathbf{0}_{N} & \mathbf{0}_{N}
\end{array}\right] \\
& +\frac{1}{N} \frac{\partial \boldsymbol{\lambda}_{N}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}^{\mathrm{T}}}
\end{aligned}
$$

where $\mathbf{0}_{N}$ is shorthand for an N-dimensional vector of zeros. Leaving $\frac{\partial}{\partial \boldsymbol{\theta}^{\mathrm{T}}} \boldsymbol{\lambda}_{N}(\boldsymbol{\theta})$ aside for the moment, we focus on a submatrix of the first term on the right-hand side, that is the last P rows of the second column. This vector comprises the derivatives of the P second-order moments with respect to β; the analysis of the rest of the matrix is just a simpler case. By Lemmas A. 3 and A. 4 in Lee (2007a), one can write every p-th element of said subvector, for $p=1,2, \ldots, P$, as:

$$
\frac{1}{N} \boldsymbol{\varepsilon}_{N}^{\mathrm{T}}(\boldsymbol{\theta}) \mathbf{P}_{p, N} \widetilde{\mathbf{G}}_{N}\left(\beta_{0}\right)\left(\alpha_{0} \iota+\mathbf{X}_{N} \boldsymbol{\gamma}_{0}+\mathbf{G}_{N} \mathbf{X}_{N} \boldsymbol{\delta}_{0}+\boldsymbol{\varepsilon}_{N}\right)=b_{p, N}+v_{p, N}+t_{p, N}+f_{p, N}
$$

where $\mathbf{y}_{N}\left(\boldsymbol{\theta}_{0}\right) \equiv\left(\mathbf{I}_{N}-\beta_{0} \mathbf{G}_{N}\right)^{-1}\left(\alpha_{0} \mathbf{l}_{N}+\mathbf{X}_{N} \boldsymbol{\gamma}_{0}+\mathbf{G}_{N} \mathbf{X}_{N} \boldsymbol{\delta}_{0}+\boldsymbol{\varepsilon}_{N}\right)$. The terms on the right-hand side are instead given by:

$$
b_{p, N}=\frac{1}{N} \mathbf{d}_{N}^{\mathrm{T}}(\boldsymbol{\theta}) \mathbf{P}_{p, N} \mathbf{G}_{N} \mathbf{y}_{N}\left(\boldsymbol{\theta}_{0}\right)=\frac{1}{N} \mathbf{d}_{N}^{\mathrm{T}}(\boldsymbol{\theta}) \mathbf{P}_{p, N} \mathbf{G}_{N} \mathbb{E}\left[\mathbf{y}_{N}\right]+o_{P}(1),
$$

and:

$$
\begin{aligned}
& \quad v_{p, N}=\frac{1}{N} \boldsymbol{\varepsilon}_{N}^{\mathrm{T}} \mathbf{P}_{p, N} \mathbf{G}_{N} \mathbf{y}_{N}\left(\boldsymbol{\theta}_{0}\right)=\sigma_{0}^{2} \frac{1}{N} \operatorname{Tr}\left[\mathbf{P}_{p, N} \widetilde{\mathbf{G}}_{N}\left(\beta_{0}\right)\right] \\
& +\sum_{k=1}^{K} \frac{1}{N} \sigma_{0}^{2} \operatorname{Tr}\left[\left(\mathbf{I}_{N}+\psi_{0} \mathbf{E}_{N}\right)^{\mathrm{T}} \mathbf{P}_{p, N} \widetilde{\mathbf{G}}_{N}\left(\beta_{0}\right)\left(\gamma_{k, 0} \mathbf{C}_{k, N}+\delta_{k, 0} \mathbf{G}_{N} \mathbf{C}_{k, N}\right) \xi_{k, 0}\right]+o_{P}(1)
\end{aligned}
$$

and:

$$
\begin{aligned}
t_{p, N}= & \frac{1}{N}\left(\beta_{0}-\beta\right) \varepsilon_{N}^{\mathrm{T}} \widetilde{\mathbf{G}}_{N}\left(\beta_{0}\right)^{\mathrm{T}} \mathbf{P}_{p, N} \mathbf{G}_{N} \mathbf{y}_{N}\left(\boldsymbol{\theta}_{0}\right) \\
= & \sigma_{0}^{2}\left(\beta_{0}-\beta\right) \frac{1}{N}\left\{\operatorname{Tr}\left(\widetilde{\mathbf{G}}_{N}^{\mathrm{T}}\left(\beta_{0}\right) \mathbf{P}_{p, N} \widetilde{\mathbf{G}}_{N}\left(\beta_{0}\right)\right)+\sum_{k=1}^{K} \operatorname{Tr}\left[\left(\mathbf{I}_{N}+\psi_{0} \mathbf{E}_{N}\right)^{\mathrm{T}}\right.\right. \\
& \left.\left.\cdot \widetilde{\mathbf{G}}_{N}^{\mathrm{T}}\left(\beta_{0}\right) \mathbf{P}_{p, N} \widetilde{\mathbf{G}}_{N}\left(\beta_{0}\right)\left(\gamma_{k, 0} \mathbf{C}_{k, N}+\delta_{k, 0} \mathbf{G}_{N} \mathbf{C}_{k, N}\right) \xi_{k, 0}\right]\right\}+o_{P}(1)
\end{aligned}
$$

and:

$$
\begin{aligned}
f_{p, N}= & \frac{1}{N} \sum_{k=1}^{K}\left(\mathbf{x}_{k^{\prime}, N}^{*}-\mathbb{E}\left[\mathbf{x}_{k^{\prime}, N}^{*}\right]\right)^{\mathrm{T}} \boldsymbol{\Gamma}_{k, 0}^{\mathrm{T}}(\boldsymbol{\theta}) \mathbf{P}_{p, N} \mathbf{G}_{N} \mathbf{y}_{N}\left(\boldsymbol{\theta}_{0}\right) \\
= & \frac{1}{N} \sum_{k=1}^{K} \xi_{k, 0} \mathbf{C}_{k, N}^{\mathrm{T}} \boldsymbol{\Gamma}_{k, 0}^{\mathrm{T}}(\boldsymbol{\theta}) \mathbf{P}_{p, N} \widetilde{\mathbf{G}}_{N}\left(\beta_{0}\right)\left(\mathbf{I}_{N} \sigma_{0}^{2}+\sum_{k^{\prime}=1}^{K}\left(\gamma_{k^{\prime}, 0} \mathbf{I}_{N}+\delta_{k^{\prime}, 0} \mathbf{G}_{N}\right) \mathbf{C}_{k, N}\right) \\
& +\frac{1}{N} \sum_{k=1}^{K} \sum_{k^{\prime}=1}^{K} \Xi_{k k^{\prime}} \cdot \mathbf{P}_{p, N} \widetilde{\mathbf{G}}_{N}\left(\beta_{0}\right)\left(\gamma_{k^{\prime}, 0} \mathbf{I}_{N}+\delta_{k^{\prime}, 0} \mathbf{G}_{N}\right)+o_{P}(1) .
\end{aligned}
$$

All the probability limits above imply uniform convergence for any $\boldsymbol{\theta} \in \Theta$. Evaluating these terms at $\boldsymbol{\theta}=\boldsymbol{\theta}_{0}$, implies $d_{p, N}=v_{p, N}=t_{p, N}=f_{p, N}=o_{P}(1)$ as $\mathbf{d}_{N}\left(\boldsymbol{\theta}_{0}\right)=\mathbf{0}$. Collecting these results together gives:

$$
\begin{aligned}
& \frac{1}{N} \varepsilon^{\mathrm{T}}(\boldsymbol{\theta}) \mathbf{P}_{p, N} \mathbf{G}_{N} \mathbf{y}_{N}\left(\boldsymbol{\theta}_{0}\right)=\sigma_{0}^{2} \operatorname{Tr}\left[\mathbf{P}_{p, N} \widetilde{\mathbf{G}}_{N}\left(\beta_{0}\right)\right] \\
&+\sigma_{0}^{2} \sum_{k=1}^{K} \xi_{k, 0} \operatorname{Tr}\left[\left(\mathbf{I}_{N}+\psi_{0} \mathbf{E}_{N}\right)^{\mathrm{T}} \mathbf{P}_{p, N} \widetilde{\mathbf{G}}_{N}\left(\beta_{0}\right) \mathbf{G}_{N}\right]+o_{P}(1)
\end{aligned}
$$

Furthermore, some tedious analysis reveals that $\frac{1}{N} \frac{\partial}{\partial \boldsymbol{\theta}^{\mathrm{T}}} \boldsymbol{\lambda}_{N}(\boldsymbol{\theta})=\frac{1}{N} \frac{\partial}{\partial \boldsymbol{\theta}^{\mathrm{T}}} \boldsymbol{\lambda}\left(\boldsymbol{\theta}_{0}\right)+o_{P}(1)$; hence, the $P \times 1$ submatrix of $\mathbf{J}_{N}(\boldsymbol{\theta})$ under examination has the desired properties. Finally, consistency of $\widehat{\boldsymbol{\theta}}_{G M M}$ also straightforwardly implies that $\mathbf{J}_{N}(\overline{\boldsymbol{\theta}}) \xrightarrow{p} \mathbf{J}_{0}$. These considerations, together with equation A.12, yield the desired result through the usual application of Slutsky's theorem.

Addendum A: bias of conventional methods: analysis

This section elaborates the analysis of the bias entailed by conventional methods for the estimation of social effects - specifically Bramoullé et al. (2009, henceforth BDF) - as anticipated in footnote 15 of the main text. First, recall that under an exogeneity assumption about the matrix of covariates \mathbf{X}, BDF proposed a consistent estimator which employs the spatial lags of the covariates themselves as instruments. To better understand the source of endogeneity in the model presented in this paper, it is useful to examine the source of endogeneity for OLS under the exogeneity assumption in BDF. Recall the SAR model (11), written without N subscripts:

$$
\mathbf{y}=\alpha \iota+\beta \mathbf{G} \mathbf{y}+\gamma \mathbf{x}+\varepsilon
$$

and note that under homoscedasticity, OLS is based on the following moments:

$$
\begin{align*}
\mathbb{E}\left[\mathfrak{\iota}^{\mathrm{T}} \boldsymbol{\varepsilon}\right] & =0 \tag{A.13}\\
\mathbb{E}\left[(\mathbf{G} \mathbf{y})^{\mathrm{T}} \boldsymbol{\varepsilon}\right] & =\sigma_{0}^{2} \operatorname{Tr}\left((\mathbf{I}-\beta \mathbf{G})^{-1} \mathbf{G}^{\mathrm{T}}\right) \tag{A.14}\\
\mathbb{E}\left[\mathbf{x}^{\mathrm{T}} \boldsymbol{\varepsilon}\right] & =0, \tag{A.15}
\end{align*}
$$

where (A.14) is better understood by noting that:

$$
\mathbb{E}\left[(\mathbf{G} \mathbf{y})^{\mathrm{T}} \varepsilon\right]=\mathbb{E}\left[\varepsilon^{\mathrm{T}}(\mathbf{I}-\beta \mathbf{G})^{-1} \mathbf{G}^{\mathrm{T}} \varepsilon\right]
$$

The bias arising from endogneity is proportional to the right-hand side of (A.14). Since Gy linearly depends on $\boldsymbol{\varepsilon}$, this moment is non-zero in expectation, and therefore OLS is inconsistent. This is circumvented by substituting it by the moment:

$$
\mathbb{E}\left[\left(\mathbf{G}^{1} \mathbf{y}\right)^{\mathrm{T}} \boldsymbol{\varepsilon}\right]=0
$$

for some positive integer q. This moment equals zero in expectation and is therefore valid so long as the adjacency matrix \mathbf{G} satisfies a the conditions spelled out by BDF (i.e. \mathbf{I}, \mathbf{G} and \mathbf{G}^{2} need to be linearly independent).

The model we consider generalizes that by BDF by making \mathbf{x} and ε correlated. Consider for simplicity the case with only one individual covariate ($K=1$) as well as a $\operatorname{SARMA}(0,1)$ specification. For some positive integer q, our key moments are given by the equations:

$$
\begin{align*}
\mathbb{E}\left[(\mathbf{G} \mathbf{y})^{\mathrm{T}} \varepsilon\right]= & \mathbb{E}\left[(\gamma \mathbf{x}+\varepsilon)^{\mathrm{T}}(\mathbf{I}-\beta \mathbf{G})^{-1} \mathbf{G} \varepsilon\right] \\
= & \gamma \xi \sigma^{2} \operatorname{Tr}\left(\mathbf{C}^{\mathrm{T}}(\mathbf{I}-\beta \mathbf{G})^{-1} \mathbf{G}^{\mathrm{T}}(\mathbf{I}+\psi \mathbf{E})\right) \tag{A.16}\\
& +\sigma^{2} \operatorname{Tr}\left((\mathbf{I}-\beta \mathbf{G})^{-1} \mathbf{G}^{\mathrm{T}}\right)
\end{align*}
$$

and:

$$
\begin{equation*}
\mathbb{E}\left[\left(\mathbf{G}^{q} \mathbf{x}\right)^{\mathrm{T}} \varepsilon\right]=\xi \sigma^{2} \operatorname{Tr}\left(\left(\mathbf{G}^{q} \mathbf{C}\right)^{\mathrm{T}}(\mathbf{I}+\psi \mathbf{E})\right) . \tag{A.17}
\end{equation*}
$$

When the model features endogeneity $(\xi \neq 0)$, both moments (A.16) and (A.17) are non-zero in expectation. Observe that (A.16) is composed of two terms: one that encodes the endogeneity of Gy relative to $\boldsymbol{\varepsilon}$, and one that captures the endogeneity between \mathbf{x} and $\boldsymbol{\varepsilon}$. Instead, the bias in (A.17) is entirely due to the endogeneity of \mathbf{x}. The bias depends crucially on the interaction between the network adjacency matrix \mathbf{G} and the characteristics matrix \mathbf{C}, which determines the spatial correlation of the different variables at hand. Note also that the spatial MA(1) term of ε, expressed by the term $\psi \mathbf{E}$, amplifies the diffusion across individuals, but it does not cause a bias to the BDF moments so long as the individual characteristics are exogenous $(\xi=0)$.

Addendum B: data transformations, empirical results

Table A below reports results from estimates of a variation of model (13), adapted to the specification (33) from our empirical application (with $\delta=0$), where matrix \mathbf{B} is constructed in such a way that, for some given choice of the characteristic matrix \mathbf{C}, it is $\mathbf{B C}=\mathbf{0}$. In particular, we set $\mathbf{B}=\mathbf{I}-\mathbf{C C}^{+}$, where \mathbf{C}^{+}is the Moore-Penrose pseudoinverse of \mathbf{C}. The results are characterized by large standard errors and point estimates that are at times implausible, especially for the social effects parameter β.

Table A: Empirical estimates: data transformations

	Outcome variable: $y_{i}^{(1)}$						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
β	0.224	0.425^{*}	$0.765^{* * *}$	$1.424^{* * *}$	$1.339^{* * *}$	$0.282^{* * *}$	0.254
	(0.144)	(0.251)	(0.282)	(0.305)	(0.188)	(0.155)	(0.208)
γ	$11.760^{* * *}$	$11.073^{* * *}$	$11.322^{* * *}$	$12.486^{* * *}$	$13.574^{* * *}$	$10.477^{* * *}$	$10.930^{* * *}$
	(0.461)	(0.826)	(0.861)	(0.736)	(1.001)	(0.562)	(0.569)
$\chi_{f e}$	0.196^{*}	$0.461^{* *}$	$0.694^{* * *}$	$0.304^{* *}$	$0.304^{* *}$	$0.583^{* * *}$	$0.258^{* *}$
	(0.101)	(0.191)	(0.182)	(0.134)	(0.134)	(0.117)	(0.122)
Outcome variable: $y_{i}^{(2)}$							(economics major choice)
		(8)	(9)	(10)	(11)	(12)	(13)
		0.355	-0.182	0.095	8.353	0.265	-0.357
β	(0.466)	(0.735)	(0.548)	(9.461)	(0.443)	(0.522)	(0.619)
γ	$0.538^{* * *}$	$0.614^{* * *}$	$0.443^{* * *}$	-1.435	0.356^{*}	$0.636^{* * *}$	$0.630^{* * *}$
	(0.093)	(0.148)	(0.116)	(2.116)	(0.199)	(0.117)	(0.147)
$\chi_{f e}$	0.002	-0.003	0.045^{*}	$0.602^{* * *}$	$0.602^{* * *}$	0.002	-0.007
	(0.020)	(0.034)	(0.025)	(0.105)	(0.105)	(0.021)	(0.024)
$\delta=0$	YES						
\mathbf{C}	\mathbf{C}_{e}	$\mathbf{C}_{h 1}$	$\mathbf{C}_{h 2}$	$\mathbf{C}_{d h 1}$	$\mathbf{C}_{d h 2}$	$\mathbf{I}+\mathbf{G}$	$\mathbf{I}+\frac{1}{2} \mathbf{G}$
Obs.	1,141	1,141	1,141	1,141	1,141	1,141	1,141

Notes. Each column in this table reports IV/2SLS estimates of a transformed version of model (33), for both outcome variables as indicated in the headers of the top and bottom panels. The transformation is as follows: both sides of the regression equation (in vectoral form), are pre-multiplied by a matrix \mathbf{B} such that, for a given choice of matrix \mathbf{C} as specified in each column, $\mathbf{B C}=\mathbf{0}$, yielding an augmented version of model (13). Specifically, $\mathbf{B}=\mathbf{I}-\mathbf{C C}^{+}$, where \mathbf{C}^{+}is the Moore-Penrose pseudoinverse of \mathbf{C}. All estimates incorporate the restriction $\delta=0$ (no exogenous effects). Point estimates for parameters other than β, γ and $\chi_{f e}$ are omitted. Standard errors are in parentheses. Asterisk series: ${ }^{*},{ }^{* *}$, and ${ }^{* * *}$; denote statistical significance at the 10,5 and 1 per cent level, respectively. Obs.: Observations.

[^0]: *We express our heartfelt gratitude to Tiziano Arduini, Manuel Arellano, Yann Bramoullé, Áureo de Paula, Bryan Graham, Ida Johnsson and Michele Pellizzari for helpful discussions and their advice. Likewise, we extend our thanks to all seminar participants who, at the 2016 North American Summer Meeting of the Econometric Society, the 2016 Conference of the International Association for Applied Econometrics, GREQAM Université de Marseille, the New Economic School, and the 2018 European Winter Meeting of the Econometric Society, provided helpful comments and feedback regarding this paper or its previously circulated versions. We are especially grateful to Giacomo De Giorgi, Lorenzo Peccati, Michele Pellizzari and Silvia Redaelli for sharing the data used in our empirical application. We are the sole responsible for any outstanding mistakes and omissions.
 ${ }^{\dagger}$ Universidad de Cantabria; e-mail: santiago. pereda@unican.es.
 ${ }^{\ddagger}$ Charles University and the Czech Academy of Sciences, e-mail: Paolo.Zacchia@cerge-ei.cz.

[^1]: ${ }^{1}$ Studies of R\&D and knowledge spillovers more generally, which follow the tradition initiated by Jaffe $(1986,1989)$, are seldom counted among these studies. This is quite a notable omission, since the workhorse econometric frameworks employed in this literature are easily seen as variations of the standard spatial models utilized for the estimation of peer effects. More recent contributions about R\&D spillovers include Bloom et al. (2013), Lychagin et al. (2016) and Zacchia (2020). Other related strands of literature include the one about peer effects in scientific production (Azoulay et al., 2010; Waldinger, 2012) and that about learning externalities (Conley and Udry, 2010).

[^2]: ${ }^{2}$ The leading case is again provided by Bramoullé et al. (2009), who allow for fixed effects specific to each of the multiple "networks" that make up their samples. To remove them, they propose local data demeaning procedures that conceptually precede their main two-stages estimation approach.
 ${ }^{3}$ Zacchia (2020) analyzes a model of R\&D spillovers in which firms' unobservables are correlated in the network of $R \& D$ relationships, and are simultaneous to the $R \& D$ of connected firms. In order to identify spillover effects, he constructs IVs motivated on the finite empirical spatial correlation of R\&D. The framework presented here instead does not restrict the spatial correlation of covariates.
 ${ }^{4}$ In a recent contribution, Kuersteiner and Prucha (2020) examine a SAR model for panel data in which the interaction matrix is possibly endogenous and covariates are weakly exogenous, and propose an appropriate GMM estimator. In our cross-sectional framework covariates are endogenous.

[^3]: ${ }^{5}$ For example, the R\&D of other firms e_{i} can both lead to positive knowledge spillovers on output y_{i} and to negative business stealing effects; see e.g. Bloom et al. (2013), where these two effects are separately identified under the hypothesis that they are mediated by different weights $g_{i j}$.
 ${ }^{6}$ We observe that variations of this assumption are typical in the spatial econometrics literature, see e.g. Kelejian and Prucha (2007, 2010); Lee (2007a); Lin and Lee (2010); Liu and Lee (2010).

[^4]: ${ }^{7}$ Note that by assuming complete information we make our analysis more general. As discussed by Zacchia (2020), incomplete information provides additional avenues for the identification of social effects, thanks to implicit restrictions on the cross-correlation of strategic variables.

[^5]: ${ }^{8}$ In both constructed examples the composite unobservable variable ε_{i} follows a first order "spatially autoregressive" process, which implies that individual unobservables are increasingly dissimilar the farther apart are any two agents in the network (a spatial $\operatorname{AR}(1)$ process can be approximated as a spatial $\mathrm{MA}(\infty)$ process). Observe that the dependence between the unobservable factor ε_{i} and the observable x_{i} is specified in two different ways across the two examples: in Proposition 2, as a linear regression of the sole innovation term of the spatial $\mathrm{AR}(1)$ process over x_{i}, and in Proposition 3 , as a linear regression of the entire unobservable ε_{i} over x_{i}.

[^6]: ${ }^{9}$ By "fully segregated" group structure, we refer to a topological relationship between any triad of observations $(i, j, k) \in \mathcal{I}^{3}$ such that if i and j are connected, they are also either both connected or both disconnected to any third agent k (if $c_{i j} \neq 0$ then $c_{i k} \neq 0 \Leftrightarrow c_{j k} \neq 0$).

[^7]: ${ }^{10}$ Observe that as per $(7), \operatorname{Cov}\left(x_{i}, x_{j}\right) \neq 0$ if at least one of the following three conditions is true: (i) $\operatorname{Cov}\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right) \neq 0$; (ii) $\xi \neq 0$ and $c_{i j} \neq 0$; (iii) $\xi \neq 0$ and $\mathbb{C o v}\left(\varepsilon_{i}, \varepsilon_{j}\right) \neq 0$. Hence, a cross-correlation structure such as (8) may arise through a variety of mechanisms; for example, if x_{i} is some measure of a student's high-school background while in college (like in our application) student self-selection occurring differentially across districts is consistent with the third condition above.

[^8]: ${ }^{11}$ We plan to study models of this sort in future work; here, we develop some intuition. Suppose that ε_{i} is the composition of multiple "fundamental" shocks or factors, similarly as in Zacchia (2020), Appendix B (where such factors are interpreted as "technologies"). Suppose further that connections in \mathcal{G} are statistically dependent on how many such fundamental factors are shared by any two agents i and j (e.g. two firms are more likely to link up if they share more technologies). Then, connected pairs are likely to have correlated unobservables. However, this does not necessarily bear any implications for the outcome of interest, e.g. productivity: while some technology combinations can be conducive to higher-than-average outcomes (conditionally), others would lead to lower-than-average ones.

[^9]: ${ }^{12}$ In this particular case, we prefer to duplicate notation to highlight the difference between \mathcal{G} as an unstructured set of edges and \mathbf{G} as its arrayed version (and similarly for \mathcal{C} and \mathbf{C}). We feel that this facilitates comparisons with frameworks and models from other contributions in the literature.
 ${ }^{13}$ Other authors prefer the denomination "mixed regressive-spatially autoregressive" to remark the presence of \mathbf{x} on the right-hand side of (11). Here we opt for a more concise terminology.

[^10]: ${ }^{14}$ This is analogous to the within transformation for the removal of fixed effects in panel data or to the data transformations by Bramoullé et al. (2009) that remove network-specific common effects.

[^11]: ${ }^{15}$ In an "Addendum" to the Appendix we analyze the bias entailed by conventional methods under our assumptions. This helps appreciate how the bias depends on the topology of the problem.

[^12]: ${ }^{16}$ The analysis, including Proposition 1, would proceed largely unchanged. As already mentioned, one can think of x_{i} from Section 2 as the composition of K factors, with $\gamma_{0} x_{i}=(1-\mu)(\mathbf{X} \boldsymbol{\gamma}+\mathbf{G X} \boldsymbol{\delta})$.

[^13]: ${ }^{17}$ In a study about the health outcomes of children, Christakis and Fowler (2013) find that most variables present a spatial autocorrelation in the space of friendship network up to two degrees of distance. Zacchia (2020) observes the same property for the R\&D investment of high-tech firms that are connected through research collaborations. In addition, he argues that this property can follow from an underlying SMA(1) process of technological shock, and that it is a good approximation of a model of network formation driven by a homophily dynamic, where two firms link up with some probability only if their unobservables are similar.

[^14]: ${ }^{18}$ See e.g. the discussion around (10). There, $\mathbf{C}=\left(\mathbf{I}-\sum_{a=1}^{A} \phi_{a} \mathbf{F}_{a}\right)^{-1}\left(\mathbf{I}+\sum_{m=1}^{M} \psi_{m} \mathbf{E}_{m}\right)$.

[^15]: ${ }^{19}$ For example, Kapoor et al. (2007); Kelejian and Prucha (2010); Drukker et al. (2013), among the others, analyze $\operatorname{SAR}(1)$ disturbances, while Lee and Liu (2010) consider higher order SAR processes.

[^16]: ${ }^{20}$ In this case, the model is still identified following the elimination of selected elements of $\boldsymbol{\xi}$.

[^17]: ${ }^{21}$ Note that the exact relationship between β, μ and ν depends on functional form assumptions of our model, but the intuition is more general.
 ${ }^{22}$ If individual "effort" e_{i} is observable, an alternative route for the separate identification of μ and v would be based on the structural "production function" (2): this is the approach taken in studies of R\&D spillovers, since researchers can typically observe the R\&D expenditures of firms.

[^18]: ${ }^{23}$ We simulated an estimation of our model using moment conditions (17); however, this exercise is outperformed by the main simulation which is based on the bias-adjusted moments (18), that we discuss in Section 5. Both sets of moments follow from the same data generation process and thus should be equivalent, but the linear ones are computationally more convenient.

[^19]: ${ }^{24} \mathrm{By}$ this algorithm, all observations are first ordered along a line and connected to an even number of B neighbors; this defines an initial set of pairwise binary associations $g_{0, i j}=g_{0, j i} \in\{0,1\}$, with $g_{0, i i}=0$ for every node i. Subsequently, all links are subject to random rewiring (the link is deleted, and one of the two involved nodes becomes connected with a random third node) with probability b. This procedure yields a new topology $g_{1, i j}=g_{1, j i}$ (still without self-links) with associated adjacency $\operatorname{matrix} \mathbf{G}_{1}$. The final row-normalized adjacency matrix is obtained as $\mathbf{G}=\operatorname{diag}\left(\mathbf{G}_{1} \iota\right) \mathbf{G}_{1}$. In all our simulations we set $B=2$ and $b=0.25$. These choices combined ensure a good overlap between the network adjacency matrices \mathbf{G} and the characteristic matrix \mathbf{C} across all our experiments.

[^20]: ${ }^{25}$ To accommodate those \mathbf{C} matrices that are by construction not of full rank, we specify \mathbf{B} as the annihilator matrix based on the Moore-Penrose pseudoinverse $\mathbf{C}^{+}: \mathbf{B}=\mathbf{I}-\mathbf{C C}^{+}$.

[^21]: ${ }^{26}$ Notably, the 2SLS estimates for β when $\mathbf{z}=\mathbf{w}$ are not biased, but the bias associated with γ appears larger. In general, in all these experiments β seldom displays a larger bias; this is likely due to the inclusion of \mathbf{w} in our d.g.p. and of moments based on it across all our estimators. In different Monte Carlo simulations that omit w, which we experimented with (though we do not report them here for the sake of brevity), the bias associated with β is typically larger.
 ${ }^{27}$ Also note that when $\mathbf{C}=\mathbf{I}+\mathbf{G}+\mathbf{G}^{2}$ and $\mathbf{C}_{e}=\mathbf{I}+\mathbf{G}$ (Experiment 3) the misspecification bias does not appear sizable, not even in the case of parameter ξ.

[^22]: ${ }^{28}$ We also obtained separate results that alter the parameters of the small-world algorithm with respect to the baseline, by either setting $B=4$ or $b=0.9$ (see footnote 24). While we do not report these results for brevity, they display patterns that are qualitatively identical to the baseline's.
 ${ }^{29}$ Bocconi University offers undergraduate and graduate programs in Economics, Finance, Business Administration, and - to a lesser extent - in other Social Sciences.
 ${ }^{30}$ There were in total nine common courses, of which two were in legal subjects and were excluded by the authors. The two law classes had unusually low attendance rates and thus a lower number of parallel sessions; consequently, including them in the count would inappropriately inflate the number of peers that each student has.

[^23]: ${ }^{31}$ In Italian universities like Bocconi, grades are awarded over a scale of 30 points, with 18 being the passing grade. A GPA in Italy is a weighted average of all exam grades; with weights measuring the relative hours load of a particular course.
 ${ }^{32}$ In Italy, completion of high school is conditional upon passing a centrally-managed nationwide exam (which differs by type of high school, e.g. technical versus academic-oriented "licei"); grades in this exam are awarded over a scale of 100 points, with 60 being the passing grade. In the data x_{i} is rescaled on a zero-to-one measure.

[^24]: ${ }^{33}$ The original study also included a significant predictor of major choice: a dummy variable that indicates whether a student declared Economics (instead of Business) as their favorite major before taking the final decision at the end of the initial common courses. This is an obvious instrument for the identification of social effects in our secondary outcome of interest: major choice, and we have no reason to suspect it endogenous. As the objective of our analysis is to showcase our proposed method in a real setting where endogeneity is salient, we chose to omit this variable from the analysis.
 ${ }^{34}$ We would like to remark that neither of us has graduated from or has been employed at Bocconi University. One of us briefly attended one of its undergraduate programs before dropping out.

[^25]: ${ }^{35}$ Provinces are traditional administrative units of Italy. In 1998 there were 101 provinces, grouped in 20 larger regions. We set $d_{i j}=0$ if $i=j$ or the two students hail from the same province.

[^26]: ${ }^{36}$ There are a few differences between the $\mathcal{H}(i)$ groups we use to construct $\mathbf{C}_{h 1}$ and the 1859 political map of Italy. First, we detach both Sardinia and Sicily from their parent kingdoms ("SardiniaPiedmont" and "Two Sicilies"). Second, we split Lombardy-Venetia into its constituent parts. Third, we treat the two small historical duchies of Parma-Piacenza and Modena-Reggio as one polity.
 ${ }^{37}$ Italian traditional regional languages, such as Lombard, Friulian, Neapolitan or Sardinian, are still widely spoken nowadays. Although most of them belong to the Romance linguistic family, they often lack mutual intelligibility, hence their colloquial denomination as "dialects" may be erroneous.
 ${ }^{38}$ It is important to comment on how we treat the non-Italian students (less than 2 per cent of the dataset). In the construction of \mathbf{C}_{d} they are treated as hailing from an additional, very distant "province." In the matrices of the \mathbf{C}_{h} kind instead, they are identified as a separate block.

[^27]: ${ }^{39}$ This can be due to an attempt to estimate the full model, including the γ parameter, with this particular set of instruments - we find it intrinsically interesting to understand whether high school performance carries over in college. If interest lied in estimating social effects only, one could drop γ from the model and obtain more precise estimates, at the cost of a narrower LATE-like interpretation of social effects (in this case, mediated by the share of females among one's peers).
 ${ }^{40}$ In the original paper by De Giorgi et al. (2010), the baseline 2SLS estimates of β are in the order of 0.07 . These are obtained using instruments based on the spatial lags of three \mathbf{x} variables: the high school final grade, the score at the Bocconi admission test, and the dummy indicator about a student's preference for economics observed before the actual choice about major is taken.
 ${ }^{41}$ These estimates indicate that on average, ten extra points in the high school final exam (on a scale of 100) are associated, on average, with 1-1.2 extra points in the later career GPA (on a scale of 30) and a probability to choose Economics as major which is higher by about six percentage points.
 ${ }^{42}$ While experimenting with GMM specifications that include exogenous effects, we observed that they typically lead to noisier estimates of key parameters but neither to economically nor statistically significant estimates of δ, similarly to the patterns shown by conventional estimators from Table 6 .

[^28]: ${ }^{43}$ However, the estimates of ξ implied by characteristic matrices like $\mathbf{C}_{h 1}, \mathbf{C}_{h 2}$ and $\mathbf{I}+\mathbf{G}$, while very small in magnitude, are registered statistically significant. This could be a byproduct of using "weak" characteristic matrices, something we plan to investigate further in future work.

[^29]: ${ }^{44}$ Note that in our setup, it is already possible to relax this assumption. Consider for example the simple linear specification of endogeneity discussed at length in subsection 2.3. If (14) were replaced with:

 $$
 \mathbb{E}[\widetilde{\mathbf{x}} \mid \mathbf{G}, \mathbf{C}, \varepsilon]=\mathbf{0} .
 $$

 our derivation and identification result would hold regardless. What is key is that either the structural error term ε or the independent component of individual characteristics $\widetilde{\mathbf{x}}$ is mean independent of the network structure (and the characteristics structure too). The plausibility of either hypothesis depends on the empirical application; in this paper we have maintained the former, rather than the latter, for ease of exposition. A further idea for future work is to examine which models of network formation - intended as restrictions on $\mathcal{F}(\cdot)$ - are consistent with these assumptions.

