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Plan of the lecture
This lecture covers a selection of econometric models that feature
a limited dependent variable (LDV). The tools developed in
this lecture have wide applicability, and are instrumental towards
some particular topics treated in later lectures (14-18).

Specifically, this lecture covers three major themes.

1. Models for multinomial responses (multinomial logit and
probit, models for ordered LDVs): the backbone of demand
estimation (Lecture 14) and entry game models (Lecture 16).

2. LDV models for panel data (fixed/random effects adapted
to LDVs), occasionally useful in Lectures 17 and 18.

3. The dynamic logit model (Rust, 1987) which is helpful for
the understanding of dynamic games (Lecture 16).

Knowledge of simple logit and probit (Lecture 11) is assumed.



Review of multinomial response models
What follows is an overview of leading econometric multinomial
response models. The following are presented in sequence:

• the multinomial logit model;

• the nested (multinomial) logit model;

• the mixed (multinomial) logit model;

• the multinomial probit model;

• and ordered multinomial models (probit and logit).

Emphasis is placed on the foundational multinomial logit model;
the other models, while motivated, are treated more briefly.



The multinomial logit model (1/9)
• The multinomial logit is an important limited dependent

variable (LDV) model for a multinomial outcome Yi.

• That is, the support of Yi (write it Y) is finite and countable.

• Let there be J alternative realizations of Yi (|Y| = J).

• Typically, the dependent variable is coded over a collection
of integers, Yi = 1, 2, . . . , J : however, numbers do not imply
an ordered relationship of any sort.

• Thus, the outcome variable can be conveniently re-coded in
terms of J Bernoulli variables Yji for j = 1, . . . , J with:

Yji =
{

1 if Yi = j

0 otherwise.



The multinomial logit model (2/9)
• Interest in this model falls on the probability that any of the

J possible realizations of Yi occurs as a function of some K
observable characteristics xji = (X1ji, X2ji, . . . , XKji) that
are possibly specific to alternative j = 1, . . . , J .

• If for example Yi represents different product alternatives,
xji may represent the subjective evaluation that a consumer
makes of all these alternatives.

• Because this amounts to specifying conditional probabilities,
the model is often called conditional multinomial logit.

• The (conditional) multinomial logit’s defining feature is the
following expression for the probability of all alternatives.

pji ≡ P (Yji = 1|x1i, . . . ,xJi) =
exp

(
xT

jiβ
)

∑J
k=1 exp

(
xT

kiβ
)

where β = (β1,β2, . . . ,βK) is a parameter vector of interest.



The multinomial logit model (3/9)
• Note that if xji were constant across the J alternatives, that

is x1i = x2i = · · · = xJi = xi, this model would be moot:
all the J choices would be equally likely.

• However, in this case one can re-formulate the model as:

pji ≡ P (Yji = 1|xi) =
exp

(
xT

i βj

)
∑J

k=1 exp
(
xT

i βk

)
where βj = (βj1,βj2, . . . ,βjK) is one out of J alternative-
specific parameter vectors of interest.

• The inability to estimate J alternative-specific parameters if
xji is not constant over j is an identification problem!

• Most typically, xji features both alternative-specific as well
as “constant” characteristics. The elements of βj associated
with the former are constrained constant across alternatives.



The multinomial logit model (4/9)
These different levels of variation for the observed characteristics
xji and for the parameters βj led to a use of language that may
appear confusing. Many researchers call:

• a plain multinomial logit a model that features fixed xi

and varying βj ;

• an actual conditional multinomial logit a model that on
the contrary features varying xji and fixed β;

• a mixed multinomial logit a model that “mixes” both.

This specific use of terminology may appear rather confusing to
econometricians, who are typically accustomed to call “mixed” a
multinomial logit with random parameters (more on this later).

For simplicity, the following treatment sticks to the “conditional
multinomial logit” with varying xji and fixed β.



The multinomial logit model (5/9)
Make the following observations.

• One can always reformulate an alternative-invariant variable
Xi as a vector of length J : x∗

ji = (D1jiXi, . . . , DJjiXi); with
Dℓji = 1 if ℓ = j and Dℓji = 0 otherwise, for ℓ = 1, . . . , J .

• Hence, the J parameters associated with x∗
ji correspond to

alternative-specific parameters.

• If xji contains a “constant” vector that is thus dummified,
its parameters are interpreted as the realization probabilities
conditional on all other xji’s being set at zero.

Although the “conditional multinomial logit” is more general, for
the sake of practical implementation and estimates interpretation
a researcher must always pay attention to the level of variation
of the observable characteristics xji’s.



The multinomial logit model (6/9)
Like all LDV models, the multinomial logit admits a structural
interpretation in terms of latent variables. Let:

Vji = xT
jiβ + εji

be the utility associated by observation i to the j-th alternative.
Here εji is a random component of the utility Vji. It is assumed
that alternative j is “chosen” by observation i if it is the one that
delivers the highest utility.

Yji = 1 ⇔ Vji = max {V1i, . . . , VJi}

Furthermore, if εji is i.i.d. with

εji ∼ Gumbel (0, 1)

that is, the random component follows the Gumbel distribution
with standard parameters, then the realization probabilities take
the multinomial logit form, as it is shown next.



The multinomial logit model (7/9)

pji = P

(⋃
k ̸=j

{Vji ≥ Vki}

)

= P

(⋃
k ̸=j

{
εki ≤ εji + (xji − xki)T β

})

=
ˆ ∞

−∞

∏
k ̸=j

exp
(
− exp

(
−εji − (xji − xki)T β

)) exp (−εji)
exp (exp (−εji))

dεji

=
ˆ 0

∞
−
∏
k ̸=j

exp
(
−u exp

(
(xki − xji)T β

)) 1
exp (u)du

[
u = exp (−εji)

]
=
ˆ ∞

0
exp

(
−u

[
1 +

∑
k ̸=j

exp
(
(xki − xji)T β

)])
du

= 1
1 +

∑
k ̸=j

exp
(
(xki − xji)T β

)
=

exp
(
xT

jiβ
)∑J

k=1 exp (xT
kiβ)



The multinomial logit model (8/9)
• At first the Gumbel assumption might seem rather arbitrary.

Note though that for j, k = 1, . . . , J :

(Vji − Vki) − (xji − xki)T β = εji − εki ∼ Logistic (0, 1)

the difference between any two random components follows
the standard logistic distribution (Observation 14, Lecture
3) which can be thought as a more natural choice.

• If the scale parameter is unrestricted: εji ∼ Gumbel (0,σ),
the alternative-specific probabilities are hardly changed:

pji ≡ P (Yji = 1|x1i, . . . ,xJi) =
exp

(
xT

jiβ/σ
)

∑J
k=1 exp

(
xT

kiβ/σ
)

and consequently β and σ are not separately identified. This
motivates the normalization σ = 1.



The multinomial logit model (9/9)

How to interpret the model’s coefficients β?

• They allow to calculate the marginal effects of changes in
xji on the realization probability of each alternative.

∂pji

∂xki
= pji (1 [j = k] − pki)β

where pki is understood as a function of (x1i, . . . ,xJi) for all
k = 1, . . . , J . Similarly to simpler logit and probit models,
such marginal effects must be computed and/or averaged at
specific realizations of (x1i, . . . ,xJi).

• Under the structural interpretation of the model, they also
bear an interpretation in terms of marginal utilities.

∂Vji

∂xji
=

∂
(
xT

jiβ + εji

)
∂xji

= β



Estimation of the multinomial logit model (1/4)
• The likelihood function of this model is:

L
(
β
∣∣∣{yi; x1i, . . . , xJi}N

i=1

)
=

N∏
i=1

J∏
j=1

p
yji

ji

where pji is implicitly treated as a function of the realizations
(x1i, . . . , xJi) and yji is the realization of Yji for j = 1, . . . , J
stacked in an observation-specific vector yi = (y1i, . . . , yJi).
Recall that

∑J
j=1 yji =

∑J
j=1 Yji = 1.

• Thus, the log-likelihood function is as follows.

log L
(
β
∣∣∣{yi; x1i, . . . , xJi}N

i=1

)
=

N∑
i=1

J∑
j=1

yji log (pji)

• Define the following quantity.

x̄i =
J∑

j=1
pjixji =

∑J
j=1 exp

(
xT

jiβ
)

xji∑J
k=1 exp

(
xT

kiβ
)



Estimation of the multinomial logit model (2/4)
• The First Order Conditions are as follows:

∂ log L
(
β
∣∣∣{yi; x1i, . . . , xJi}N

i=1

)
∂β

=
N∑

i=1

J∑
j=1

yji

pji

∂pji

∂β

=
N∑

i=1

J∑
j=1

yji (xji − x̄i)

= 0
since ∂pji/∂β = pji (xji − x̄i) as it is possible to verify. The
parameters are “buried” within x̄i. Since there is no closed
form solution, the estimates are obtained numerically.

• Some further algebra yields the Hessian of the log-likelihood
function, which may be useful for inference purposes.

∂ log L (β| ·)
∂β∂βT = −

N∑
i=1

J∑
j=1

yji (xji − x̄i) (xji − x̄i)T



Estimation of the multinomial logit model (3/4)
• These equations differ for models that feature only constant

characteristics xi and varying parameters βj .

• In particular, the First Order Conditions for βj , j = 1, . . . , J
are as follows (yet again without closed form solution).

∂ log L
(
β
∣∣∣{yi; x1i, . . . , xJi}N

i=1

)
∂βj

=
N∑

i=1
(yji − pji) xi = 0

• Recall that pji is a function of all the parameters! Note that
for k = 1, . . . , J it is ∂pji/∂βk = pji (1 [j = k] − pki) xi.

• The Hessian of the log-likelihood function instead has blocks
with the following form, for j, k = 1, . . . , J .

∂ log L (β| ·)
∂βj∂βT

k

= −
N∑

i=1

J∑
j=1

pji (1 [j = k] − pki) xixT
i



Estimation of the multinomial logit model (4/4)
• Sometimes the alternatives available to single observations

are not the same. Denote the choice set for observation i as
Ci. In such a case, the multinomial logit is still well defined.
The likelihood function changes as:

L (β |·) =
N∏

i=1

∏
j∈Ci

 exp
(
xT

jiβ
)

∑
k∈Ci

exp
(
xT

kiβ
)
yji

and estimation proceeds as in the standard case.

• In other cases, the choice set is so large as to make estimation
impractical. McFadden (1978) showed that one can still get
consistent estimates with a likelihood function like:

L (β |·) =
N∏

i=1

∏
j∈Ki

 exp
(
xT

jiβ
)

∑
k∈Ki

exp
(
xT

kiβ
)
yji

where Ki is a random subset of alternatives associated to
i that is selected so as to include i’s realized outcome Yi.



Independence of irrelevance alternatives
• The fundamental property of the multinomial logit model is

the independence of irrelevant alternatives (IIA) that
is featured by realization probabilities. In short:

pji

pki
= exp

(
(xji − xki)T β

)
for any j, k = 1, . . . , J . Thus, for every observation pair the
ratio between the realization probabilities of two alternatives
is constant, and unaffected by other alternatives ℓ and their
characteristics xℓi.

• This may be unrealistic in many settings, as illustrated by
the “red bus, blue bus” famous example (McFadden, 1974).
Suppose that one is studying the determinants of choosing a
“red bus” (j) against a car (k) as means of transportation. A
two-outcomes model would return some ratio pji/pki. Then
a “blue bus” (ℓ) is introduced. Realistically, pki should not
vary, but IIA must be violated for pji +pki +pℓi = 1 to hold.



Limitations of the multinomial logit

The multinomial logit is extremely popular: it is based on simple
expressions, it is easy enough to estimate, and it can be motivated
in ways other than the Gumbel-distributed latent shocks εji.

However, to an econometrician’s eye it also features three major
limitations.

1. The non-random “tastes” of individuals/observations, that
is the β parameters, are unrealistically homogeneous.

2. As argued, the substitution patterns between alternatives
are often unrealistic because of IIA.

3. The model is generally not well suited to data that feature
autocorrelation in time or spatial correlation.

The next three multinomial models aim at addressing limitations
1 and 2, while the third one is outside the scope of this review.



The nested logit model (1/3)
• It was McFadden himself (1978) who proposed an extension

of the multinomial logit that addresses issues of IIA.

• In the nested logit the alternative outcomes have a “tree-
like” hierarchical structure, with “limbs” and “branches.”
The J alternatives are thought as “branches” grouped across
L “limbs;” each limb has Jℓ branches with

∑L
ℓ=1 Jℓ = J .

• Thus, alternatives are denoted by Yℓji with j = 1, . . . , Jℓ and
ℓ = 1, . . . , L. They can be represented as follows.

Root

1 L

J11 1 JL

· · · · · · Limbs · · · · · ·

· · · · · · · · · · · ·· · · Branches · · ·



The nested logit model (2/3)
• Let there be H limb-specific observable characteristics zℓi,

and Kl branch-specific xℓji characteristics for ℓ = 1, . . . , L.

• In the nested logit model, the realization probabilities are:

pℓji =
exp

(
zT

ℓiα + ρℓIℓ

)
∑L

h=1 exp
(
zT

hiα + ρhIh

)︸ ︷︷ ︸
=pℓi≡P( Yℓi=1|·)

exp
(
xT

ℓjiβℓ/ρℓ

)
∑Jℓ

k=1 exp
(
xT

ℓkiβℓ/ρℓ

)︸ ︷︷ ︸
=p ji|ℓ≡P(Yℓji=1|Yℓi=1,·)

where Yℓi = 1 denotes selection of the ℓ-th limb; whereas Iℓ

is defined as follows for ℓ = 1, . . . , L.

Iℓ = log

 Jℓ∑
k

exp
(
xT

ℓkiβℓ/ρℓ

)
• The model’s parameters are θ = (α,β1, . . . ,βL, ρ1, . . . , ρL).

The nested structure operates through the ρ = (ρ1, . . . , ρL)
parameters: if ρ = ι, this is a standard multinomial logit.



The nested logit model (3/3)
• The latent variable representation of the nested logit is:

Vℓji = zT
ℓiα + xT

ℓjiβℓ + εℓji

where εℓji follows a joint GEV distribution that features ρ as
measures of within-limb anti-correlation (McFadden, 1978).

• The likelihood function is most succinctly expressed in terms
of the various realization probabilities involved:

L (θ| ·) =
N∏

i=1

L∏
ℓ=1

pyℓi
ℓi

Jℓ∏
j=1

p
yℓji

ji|ℓ


and so is the log-likelihood function to be jointly maximized.

log L (θ| ·) =
N∑

i=1

L∑
ℓ=1

yℓi log (pℓi) +
Jℓ∑

j=1
yℓji log

(
p ji|ℓ

)
• For convenience, one can sequentially estimate first Iℓ and
βℓ/ρℓ in branches; and second, α and ρ in limbs.



The mixed logit model (1/2)
The random parameters logit model, also called mixed logit
by econometricians, is based upon a representation of the latent
random utility that features heterogeneous “tastes.”

Vji = xT
jiβi + εji

The key feature is that the parameters βi are observation-specific
and treated as random, typically jointly normal.

βi ∼ N (β,Σ)

For ui = Σ− 1
2 (βi − β), the model can be re-written as follows.

Vji = xT
jiβ + vji

vji = xT
jiΣ

1
2ui + εji

The shock εji is still assumed to be standard Gumbel distributed,
and to be independent across observations and alternatives.



The mixed logit model (2/2)
• Notice that for j ̸= k, Cov (vji, vki|xji,xki) = xT

jiΣxki: this
introduces correlation between alternatives, defying IIA!

• The realization probabilities are as follows:

pji =
ˆ
RK

exp
(
xT

ji

(
β + Σ

1
2 ui

))
∑J

k=1 exp
(
xT

ki

(
β + Σ

1
2 ui

))ϕ (ui) dui

where ϕ (·) is the p.d.f. of the standard multivariate normal
distribution. This integral has no closed form solution.

• This model is typically estimated by MSL through a sample
of S simulation draws {us}S

s=1; Σ is often restricted ex ante.(
β̂MSL, Σ̂MSL

)
=

= arg max
(β,Σ)

N∑
i=1

J∑
j=1

yji log

 1
S

S∑
s=1

exp
(
xT

ji

(
β + Σ

1
2
βus

))
∑J

k=1 exp
(
xT

ki

(
β + Σ

1
2
βus

))




The multinomial probit model
The multinomial probit model is also based on the standard
representation of the latent random utility:

Vji = xT
jiβ + εji

but the random component εi = (ε1i, . . . , εJi) is jointly normally
distributed: a more natural choice than GEV distributions.

εi ∼ N (0,Σ)
Observe that if Σ is non-diagonal, the alternatives are correlated,
like in the mixed logit. Moreover, IIA does not hold in this model.

For all its advantages, this model features quite a major problem:
its realization probabilities can be very difficult to compute.

pji =
ˆ
RK

∏
k ̸=j

1
(
xT

jiβ + εji ≥ xT
kiβ + εki

) 1
|Σ|

ϕ
(
Σ− 1

2εi

)
dεi

Even simulation methods struggle to estimate this model quickly.
Furthermore, identification requires careful restrictions on Σ.



Ordered multinomial models (1/2)
• What if the alternatives are naturally ordered (for example,

Yi represents a ladder of a product’s qualities)? The models
reviewed thus far are unsuited to address the problem.

• The solution are the ordered multinomial models that
posit a latent variable representation

Y ∗
i = xT

i β + εi

that implies selection of the j-th alternative if it “passes” a
certain associated threshold αj−1, for j = 1, . . . , J .

Yi = j ⇔ αj−1 < Y ∗
i ≤ αj

• There are J thresholds α = (α1, . . . ,αJ) that are treated as
parameters to be estimated, alongside β.

• Note that the observable characteristics xi only vary at the
level of units of observation here.



Ordered multinomial models (2/2)
• Let F ε|x (εi|xi) be the c.d.f. for εi given xi: for example, the

standard normal Φ (·) for the ordered probit, the standard
logistic Λ (·) for the ordered logit, or others. Then:

pji ≡ P (Yi = j|xi)
= P (αj−1 < Y ∗

i ≤ αj |xi)

= P
(
αj−1 − xT

i β < εi ≤ αj − xT
i β
∣∣∣xi

)
= F ε|x

(
αj − xT

i β
∣∣∣xi

)
− F ε|x

(
αj−1 − xT

i β
∣∣∣xi

)
• . . . which enables MLE via a familiar log-likelihood function.

log L
(
β
∣∣∣{yi; xi}N

i=1

)
=

N∑
i=1

J∑
j=1

yi log (pji)

• The marginal effects obtain from the p.d.f.s f ε|x (εi|xi).
pji

∂xi
=
[
f ε|x

(
αj − xT

i β
∣∣∣xi

)
− f ε|x

(
αj−1 − xT

i β
∣∣∣xi

)]
β



Instrumental variables for multinomial models
An alternative estimation approach for unordered multinomial
models is based on moment conditions of the following form:

E [Yji − pji (xji;θ)| zji] = E [zji (Yji − pji (xji;θ))] = 0

for j = 1, . . . , J . These moment conditions feature:

• pji (xji;θ): the realization probability for the j-th choice, as
a function of the characteristics xji and some parameters θ;
for example, this can be a multinomial probit simulated pji;

• zji: a vector of instruments; possibly it is zji = xji, more
generally it includes a different/larger set of shifters.

If one suspects that the latent variable error εji correlates with
xji and pji (xji;θ) is correctly specified, estimating θ using these
moments in a (G)MM/MSM framework can be the sound choice.
However, this is generally less efficient than MLE.



Review of panel models for discrete outcomes
What follows is an overview of selected approaches to unobserved
heterogeneity in LDV models, when panel data are available to
the econometrician. The models outlined next are:

• the conditional logit model for binary outcomes;

• the dynamic logit model with fixed effects;

• the fixed effects multinomial logit model;

• the random effects model probit model;

• the correlated random effects models.

Emphasis is placed on the statistical interpretation of each model.



The incidental parameter problem
Practitioners of econometrics are accustomed to a fairly seamless
implementation of fixed or random effects in linear models. With
a hindsight this should be a surprise, because in general, a model
written as:

Yit = h
(
αi + xT

itβ
)

+ εit

where h (·) is some arbitrary non-linear function, should pose
econometric challenges if the longitudinal dimension of the panel
T is small (as it is extremely common in practice).

In fact, estimation of the individual effects αi is inconsistent
with small T , and this also makes the estimates of β inconsistent
via the M-Estimation First Order Conditions. This is known as
the incidental parameter problem.

This does not occur in linear models thanks to the Frisch-Waugh-
Lovell Theorem (Lecture 7). This is all but a coincidence.



Logit and probit with fixed effects
Adding fixed effects αi to the logit or the probit model in presence
of panel data gives, respectively:

P (Yit = 1|xit) = Λ
(
αi + xT

itβ
)

P (Yit = 1|xit) = Φ
(
αi + xT

itβ
)

where Λ (·) and Φ (·) are the c.d.f.s of the standard logistic and
standard normal distributions, respectively.

There is no obvious solution to the incidental parameter problem
in the probit’s case. However, the logit can be transformed so
as to remove the fixed effects αi. This is yet another coincidence,
this time due to the logistic distribution’s functional form.

The transformation obtains by conditioning on
∑T

t=1 Yit, which
is a sufficient statistic for αi.



The conditional fixed effects logit (1/4)

In the panel data logit model, write the conditional density of all
the outcomes yi = (Yi1, . . . , YiT ) of observation i.

fyi (yi| xi1, . . . , xiT ) =

=
T∏

t=1

 exp
(
αi + xT

itβ
)

1 + exp
(
αi + xT

itβ
)
yit (

1
1 + exp

(
αi + xT

itβ
))1−yit

=
exp

(
αi
∑T

t=1 yit

)
exp

(∑T
t=1 yitxT

itβ
)

∏T
t=1

[
1 + exp

(
αi + xT

itβ
)]

Note that this result can be generalized for any arbitrary vector
of “hypothetical” individual-level outcomes vi = (Vi1, . . . , ViT ).

fvi (vi| xi1, . . . , xiT ) =
exp

(
αi
∑T

t=1 vit

)
exp

(∑T
t=1 vitxT

itβ
)

∏T
t=1

[
1 + exp

(
αi + xT

itβ
)]



The conditional fixed effects logit (2/4)
The conditional fixed effects logit model (not to be confused
with the multinomial “conditional” logit) is constructed by noting
(Chamberlain, 1980) that:

fyi

(
yi

∣∣∣∣∣
T∑

t=1
yit; xi1, . . . , xiT

)
= fyi (yi| xi1, . . . , xiT )

fyi

(∑T
t=1 yit

∣∣∣xi1, . . . , xiT

)
=

exp
(∑T

t=1 yitxT
itβ
)

∑
vi∈Vi

exp
(∑T

t=1 vitxT
itβ
)

where Vi ≡
{

vi :
∑T

i=1 (vit − yit) = 0
}

is the set of all the possible
configurations of the individual binary outcomes that yield the
same count of “successes” for i as the one actually observed.

This derivation shows that
∑T

t=1 Yit is a sufficient statistic for αi

(see Lecture 4). Intuitively, this is because αi is a measure of the
average propensity to obtain a Bernoulli “success” Yit = 1.



The conditional fixed effects logit (3/4)
The likelihood function associated with this model is as follows.

L

β
∣∣∣∣∣∣
{

T∑
t=1

yit; yi; Xi

}N

i=1

 =
N∏

i=1

exp
(∑T

t=1 yitxT
itβ
)

∑
vi∈Vi

exp
(∑T

t=1 vitxT
itβ
)

In this expression, yi and Xi represent individual observations
(yit, xT

it) stacked over the panel. Some observations are due.

• The effective unit of observation is the panel unit i.

• The observations i for which the set Vi has dimension 1 do
not contribute to the likelihood function.

• This occurs for example if
∑T

t=1 Yit = 0 or
∑T

t=1 Yit = T .

• Estimation requires specifying the set Vi for t = 1, . . . , T −1.
This can be cumbersome for moderate values of T .

• Estimation of this model is otherwise standard.



The conditional fixed effects logit (4/4)
There are two more important observations to make.

• Similarly as in linear models with fixed effects, identification
follows from the time variation in the regressors xit. This
is best exemplified by the simple case with T = 2, where:

P (Yi1 = 0 ∪ Yi2 = 1| Yi1 + Yi2 = 1) =
exp

(
xT

i2β
)

exp
(
xT

i1β
)

+ exp
(
xT

i2β
)

=
exp

(
(xi2 − xi1)T β

)
1 + exp

(
(xi2 − xi1)T β

)
and symmetrically if Yi1 = 1 and Yi2 = 0.

• The elimination of the fixed effects prevents the calculation
of standard marginal effects of β on Λ

(
αi + xT

itβ
)
. Still,

it is possible to evaluate the marginal effect of changes in the
time variation of the regressors, e.g. in (xi2 − xi1) for T = 2.



Adding a lagged dependent variable
Suppose interest falls on the following model:

P
(
Yit = 1

∣∣∣xit; Yi(t−1)
)

= Λ
(
αi + xT

itβ + γYi(t−1)
)

where, similarly to dynamic linear models, it is empirically salient
to disentangle the fixed effect αi (unobserved heterogeneity) from
the effect of past outcomes Yi(t−1) (state dependence).

When β = 0, a derivation similar to the previous one applies.

fyi

(
yi

∣∣∣∣∣yi1,
T∑

t=1
yit, yiT

)
=

exp
(
γ
∑T −1

t=2 yityi(t−1)
)

∑
wi∈Wi

exp
(
γ
∑T −1

t=2 witwi(t−1)
)

Here, Wi ≡
{

wi :
∑T

i=1 (wit − yit) = 0, wi1 = yi1, wiT = yiT

}
also

restricts the first and last “pseudo-outcomes” to match the real
ones. For this reason, this dynamic logit requires T ≥ 4. When
β ̸= 0, more complications arise (Honoré and Kyriziadou, 2000).



The multinomial logit with fixed effects (1/2)
This logic also extends to the multinomial logit:

pjit ≡ P (Yjit = 1|x1it, . . . ,xJit) =
exp

(
αij + xT

jitβ
)

∑J
k=1 exp

(
αik + xT

kitβ
)

where αik for k = 1, . . . , J can be interpreted as the tendency of
individual i to make the k-th choice over the T periods.

In this case, the sufficient statistic approach gives:

fYi (Yi |Yiι; X1i, . . . , XJi ) =
exp

(∑T
t=1

∑J
j=1 yjitxT

jitβ
)

∑
ui∈Ui

exp
(∑T

t=1
∑J

j=1 ujitxT
jitβ

)
where here uit = (u1it, . . . , uJit) is a vector of pseudo-outcomes
for observation i at times t, matrices Yi, Ui and Xji obtain by
stacking yit, uit and xjit horizontally over t (for j = 1, . . . , J),
and Ui ≡ {Ui : (Yi − Ui) ι = 0} is the set of all configurations
of Ui that yield, across all the J options, the real total count.



The multinomial logit with fixed effects (2/2)
It is worth making some additional considerations.

• This model is most appropriately called “multinomial logit
with fixed effects” as the adjective conditional is most often
associated with the model’s plain cross-sectional version.

• The baseline structure of the multinomial choice problem (in
every period an observation makes at least one choice, be it
even an outside option) ensures that Ui is never a singleton.

• However, Ui may be very difficult to completely characterize
for large J and T . In this case, one should adopt a strategy to
uniformly sample from Ui and construct the denominator of
the conditional density of Yi accordingly. This is analogous
to McFadden’s (1978) analysis of the many-alternatives case.

• The model extends to unbalanced panels and heterogeneous
choice sets; for dynamics see Honoré and Kyriziadou (2000).



The random effects probit model (1/2)
In the probit case, there is no special “trick” to easily remove αi.
The standard approach is thus to treat αi as a random variable,
and to account for its distribution while estimating the model.

Suppose for example that αi|xit ∼ N
(
0,σ2

α

)
. Then:

P (Yit = 1|xit) =
ˆ
R
P (Yit = 1|xit;αi)

1
σα

ϕ

(
αi

σα

)
dαi

where ϕ (·) is the standard normal density. If P (Yit = 1|xit;αi)
proceeds according to the familiar probit form, the full likelihood
function is as follows, and it can be optimized numerically.

L
(
β,σ2

α

∣∣∣ {yi1, . . . , yiT ; xi1, . . . , xiT }N
i=1

)
=

=
N∏

i=1

T∏
t=1

ˆ
R

[
Φ
(
αi + xT

itβ
)]yit

[
1 − Φ

(
αi + xT

itβ
)]1−yit ×

× 1
σα

ϕ

(
αi

σα

)
dαi



The random effects probit model (2/2)
Some observations apply to this random effects probit model.

• As in linear models, this approach relies on the random effect
αi being independent of the regressors xit. In many practical
applications, this can be inappropriate.

• This approach can be extended to the logit, as well as to any
parametric non-linear model with fixed effects (even beyond
binary outcomes). In some cases, the integral expressing the
likelihood function has a closed form.

• Similarly, the approach can be extended to dynamic models
with lagged outcomes among the regressors.

• One can specify a discrete support for αi with an unrestricted
mass function pα (αj) = πj . This renders the approach akin
to a mixture model (see Lecture 17 for a succinct summary
of linear mixture models).



Correlated random effects models
To overcome the assumption about independence between αi and
xit, one can specify a full-fledged parametric correlation structure
between them. For example, Chamberlain’s (1980) version of the
correlated random effects model posits:

αi|xi1, . . . ,xiT ∼ N
(
xT

i1π1 + · · · + xT
iTπT ;σ2

α

)
leading to a more general likelihood function where (π1, . . . ,πT )
are parameters to estimate, alongside σ2

α.

In applications, the more restricted, easier-to-estimate version by
Mundlak (1978) is often preferred: it assumes the following.

αi|xi1, . . . ,xiT ∼ N
(

1
T

T∑
t=1

xT
itπ;σ2

α

)

These models enable the computation of marginal effects that
also embody the indirect effect of the regressors xit through αi.



The dynamic logit model (1/10)

This lecture is concluded by reviewing the dynamic logit model
as in the original formulation by Rust (1987).

• This is not a logit model with a lagged dependent variable.

• This is a model for longitudinal data where individuals take
forward-looking choices.

• More specifically, state variables depend on past choices.

• Rust frames it via a famous example: Harold Zurcher (HZ),
a superintendent for bus maintenance from Madison, WI.

• HZ is faced with a peculiar optimal stopping problem of
econometric interest: when to replace the bus engines?

• The original model about HZ is reviewed next.



The dynamic logit model (2/10)

Think of a bus in HZ’s depot observed over time t = 1, 2, . . . .

• Let Xt represent mileage of the bus: the state variable.

• Let It ∈ {0, 1} represent engine replacement for this bus:
this is an endogenous decision by HZ.

Let εt = (ε0t, ε1t) and θ1 = (θ′
1,χ). HZ’s per-period payoff is:

π (Xt, It, εt;θ1) =
{

−c (Xt;θ′
1) + ε0t if It = 0

χ − c (0;θ′
1) + ε1t if It = 1

where here: i. c (Xt;θ′
1) are regular maintenance costs, dependent

upon some parameters θ′
1; ii. χ is the replacement cost of engines,

with χ < 0; iii. ε0t and ε1t are two payoff shocks that are known
to HZ, but not to the econometrician.



The dynamic logit model (3/10)
This would be a simple logit/probit if HZ took “myopic” decisions
in every period t. However, HZ is forward-looking and maximizes
the present value of future payoffs. His value function is:

V (Xt, εt;θ) = max
{Iτ }∞

τ=t

E
[ ∞∑

τ=t

βτ−tπ (Xτ , Iτ , ετ ;θ1)
∣∣∣∣∣Xt, εt;θ2

]

where β ∈ [0, 1] is the discount factor; θ2 is the parameter set
that governs how future Xτ , ε0τ and ε1τ are determined, whose
knowledge is implicit in the expectation; and θ = (θ1,θ2).

The value function can be represented via a Bellman equation:

V (Xt, εt;θ) = max
It∈{0,1}

[π (Xt, It, εt;θ1) + βEV (Xt, It, εt;θ)]

where EV (· ;θ) is the continuation value: that is, a function for
the expected utility from periods later than t, given a choice It.



The dynamic logit model (4/10)
Specifically, the expected future value is as follows.

EV (Xt, It, εt;θ) =

=
ˆ
R3

V (Y, η0, η1;θ) p (Y, η0, η1| Xt, It, ε0t, ε1t;θ2) dY dη0dη1

Rust introduces a conditional independence assumption:

p
(
Xt+1, ε0(t+1), ε1(t+1)

∣∣∣Xt, It, ε0t, ε1t;θ2
)

=

= f
(
ε0(t+1), ε1(t+1)

∣∣∣Xt+1, Xt, It, ε0t, ε1t

)
·

· q (Xt+1| Xt, It, ε0t, ε1t;θ2)

= f
(
ε0(t+1), ε1(t+1)

∣∣∣Xt+1
)

q (Xt+1| Xt, It;θ2)

where the second line follows from additional simplifications. All
parameters in f ( ·| ·) are assumed away (say, normalized) in the
analysis. Note how Xt follows a first-order Markov process.



The dynamic logit model (5/10)
The model’s likelihood function helps appreciate the usefulness of
the assumption. Suppose that a sample of N buses is available,
and write iit = {Iiτ }t

τ=0 and xit = {Xiτ }t
τ=0 for i = 1, . . . , N and

t = 1, . . . , T , where T is finite. Then:

L
(
θ
∣∣∣{iiT ,xiT }N

i=1

)
=

N∏
i=1

T∏
t=1

P
(
Iit, Xit

∣∣∣ii(t−1),xi(t−1);θ
)

=
N∏

i=1

T∏
t=1

P (Iit|Xit;θ) q
(
Xit

∣∣∣Xi(t−1), Iit;θ2
)

where the second line follows by Rust’s assumption. This suggests
a two-step approach to estimation.

1. In the first step, estimate θ2 using solely data about xT ,
conditional on non-replacement of the engine.

2. In the second step, and for a fixed value of β (more on this
later), estimate θ1 using a “dynamic logit.”



The dynamic logit model (6/10)

The first step is fairly simple: it is a simple maximum likelihood
problem. One could for example maintain a continuous support
for Xit, formulate a functional form assumption about q (· ;θ2),
and estimate θ2 accordingly.

Alternatively, one could non-parametrically estimate the matrix
of transition probabilities after discretizing Xit. For example,
if Xit is measured in kilometers; ∆Xit = Xit − Xi(t−1), and:

P (∆Xit) =


θ2 low if 0 ≤ ∆Xit < 5000
θ2 medium if 5000 ≤ ∆Xit < 10000
θ2 high if 10000 ≤ ∆Xit < ∞

this is an exercise about estimating a categorical distribution’s
parameters with θ2 low +θ2 medium+θ2 high = 1. In Rust’s original
paper, mileage is discretized over 90 intervals.



The dynamic logit model (7/10)
To build the dynamic logit for the second step it is necessary to
make assumptions about f (·). If both ε0it and ε1it are standard
Gumbel shocks, independent of one another and of Xit, one gets:

P (Iit| Xit;θ) =

= exp (π̃ (Xit, Iit;θ1) + βEV (Xit, Iit, εt;θ))∑
Jit∈{0,1} exp (π̃ (Xit, Jit;θ1) + βEV (Xit, Jit, εt;θ))

where π̃ (Xit, Iit;θ1) ≡ χIit − c (Xit (1 − Iit) ;θ′
1) for Iit ∈ {0, 1}.

The main challenge here is computational: EV (· ;θ) depends on
the parameters in a non-trivial way, as the solution of a dynamic
optimization problem. More elaborate assumptions on f (·) bring
about additional complications.

Naturally, assumptions about c (Xit;θ′
1) are also necessary; since

Rust, a linear specification is usually preferred.



The dynamic logit model (8/10)
To estimate θ1 Rust suggests an iterative “outer loop, inner loop”
nested fixed point algorithm. Given θ̂2 as obtained in the first
step, at every iteration of θ1 proceed as follows.

• In the inner loop, use numerical methods to evaluate the
expected value function and thus P (Iit| Xit;θ); here:

EV
(
Xit, Iit; θ̃

)
=

=
ˆ
R

log

 ∑
J∈{0,1}

exp
(
π̃ (Y, J ;θ1) − βEV

(
Y, J ; θ̃

)) ·

· q
(
Y
∣∣∣Xit, Iit; θ̂2

)
dY

where θ̃ =
(
θ1, θ̂2

)
, and similarly if Xit is discretized.

• In the outer loop, search for the value of θ1 that, given θ̂2,
maximizes the joint likelihood function of the data.



The dynamic logit model (9/10)
The expected value function in the inner loop is given in closed
form: how convenient! To appreciate it, a digression is useful.

If {Vi}N
i=1 is a sequence of N i.i.d. random variables such that

Vi ∼ Gumbel (δi, 1)
then the maximum V(N) is also Gumbel-distributed. In fact:

FV(N) (v) =
N∏

i=1

P (Vi ≤ v) =
N∏

i=1

exp (− exp (− (v − δi)))

= exp

(
− exp

(
−

(
v − log

N∑
i=1

exp (δi)

)))
hence:

E
[
V(N)

]
= γ + log

N∑
i=1

exp (δi)

where γ ≈ 0.57721 is the Euler-Mascheroni constant.



The dynamic logit model (10/10)
In Rust’s model, the discount factor β is typically held fixed (e.g.
calibrated) because it is non-parametrically unidentified.

In short, two models are observationally equivalent at explaining
any given (iiT ,xiT ) sequence:

• a myopic model, where χ is low and, for t = 1, . . . , T :

Iit = arg max
Jit∈{0,1}

π (Xit, Jit, εit;θ1)

• a farsighted model, where χ is high and, for t = 1, . . . , T :

Iit = arg max
Jit∈{0,1}

π (Xit, Jit, εit;θ1) + EV (Xit, Jit, εit;θ)

and xiT is determined accordingly. For more details, see Magnac
and Thesmar (2002).



Conditional choice probability estimation (1/6)
• Rust’s model was path-breaking, but the nested fixed point

estimation algorithm has proven to be too computationally
expensive beyond relatively simple cases.

• Researchers have thus attempted alternative approaches.

• The conditional choice probability estimation approach
by Hotz and Miller (1993) is a successful one such attempt.

• The key idea is that P (Iit| Xit) can be estimated in the data.

• The parameters θ are backed up by matching such empirical
estimates to the model-implied probabilities P (Iit| Xit;θ).

• This leads to both simpler and faster estimation, and it can
be more easily generalized (multinomial choice, non-Gumbel
shocks, etc.). This presentation is based on the HZ setting.



Conditional choice probability estimation (2/6)
Conditional choice probability estimation also entails two steps:
the first one is about estimating θ2 as well as P (Iit| Xit).

• Estimation of θ2 proceeds as in Rust. When Xit has discrete
or discretized support X = {Ξ1, . . . , ΞQ} of dimension Q, this
step returns Q matrices of size 2 × Q expressed as follows.

Q̂ (Xit) ≡

q
(
Ξ1
∣∣∣Xit, 0; θ̂2

)
. . . q

(
ΞQ

∣∣∣Xit, 0; θ̂2
)

q
(
Ξ1
∣∣∣Xit, 1; θ̂2

)
. . . q

(
ΞQ

∣∣∣Xit, 1; θ̂2
)


• In addition, P (Iit| Xit) is also estimated, non-parametrically
or parametrically (e.g. via a logit). This returns vectors like:

p̂ (Xit) ≡
(
P̂ (0| Xit)
P̂ (1| Xit)

)

a “reduced form” of the model, one that is silent about θ1.



Conditional choice probability estimation (3/6)
The second step is formulated as an intuitive minimum distance
problem over Θ1, the parameter space of θ1, given θ̂2:

θ̂1 = arg min
θ1∈Θ1

∥pI=1 − pI=1 (θ1)∥

where, for different values of Xit ∈ X (e.g. those from the data):

• pI=1 is a vector of empirical conditional choice probabilities
from the first step: P̂ (1|Xit); and,

• pI=1 (θ1) is a vector of structural, model-implied conditional
choice probabilities for given θ1 and θ̂2: P

(
1
∣∣∣Xit;θ1, θ̂2

)
.

Given θ1, vector pI=1 (θ1) may be constructed via simulation.
In addition, if X is discrete a faster, simpler approach based on
linear algebra is also possible.

For exposition’s sake it is maintained next that X = {Ξ1, . . . , ΞQ}
is discrete.



Conditional choice probability estimation (4/6)
To illustrate, express the ex-ante value function as follows.

V (Xit;θ) ≡
∑

Iit∈{0,1}
P (Iit| Xit)

π̃ (Xit, Iit;θ1) +

+E [εIitt|Iit, Xit;θ ] + β
∑
Ξ∈X

q (Ξ |Xit, Iit;θ2) V (Ξ ;θ)


Further write the choice-specific mean value function as:

U (Xit, Iit;θ) ≡ π̃ (Xit, Iit;θ1) + β
∑
Ξ∈X

q (Ξ |Xit, Iit;θ2) V (Ξ ;θ)

which can be computed if for all Ξ ∈ X, V (Ξ ;θ) is known. With
Gumbel shocks, the entries of pI=1 (θ1) are calculated as follows.

P
(
Iit = 1

∣∣∣Xit;θ1, θ̂2
)

=
exp

(
U
(
Xit, 1;θ1, θ̂2

))
∑

Jit∈{0,1} exp
(
U
(
Xit, Jit;θ1, θ̂2

))



Conditional choice probability estimation (5/6)
The choice-specific mean value function can be simulated using
the first step estimates. Construct S simulated sequences:{(

i′s1, x′
s1
)

, . . . ,
(
i′sT ′ , x′

sT ′
)}S

s=1

obtained via θ̂2 and p̂ (Xit) from an initial value (I0, X0). Then:

Ũ (X0, I0;θ) = 1
S

S∑
s=1

{
χI0+c

(
X0 (1 − I0) ;θ′

1
)
+

T ′∑
τ=1

βτ
[
χI ′

sτ −

− c
(
X ′

sτ

(
1 − I ′

it

)
;θ′

1
)

+ E
[
εIτ

∣∣∣I ′
s(τ−1), X ′

s(τ−1);θ
] ]}

is an appropriate simulator for U (X0, I0;θ) as T ′ → ∞, though
in practice this is truncated at some finite T ′. When the εt shocks
are standard Gumbel, one can show that for τ ∈ N0:

E
[
εIτ+1

∣∣I ′
τ , X ′

τ ;θ
]

= γ − log P̂
(
I ′

τ

∣∣X ′
τ

)
else this conditional expectation must be obtained numerically.



Conditional choice probability estimation (6/6)
The faster method is summarized here for Gumbel shocks. Let:

π̂ (Xit;θ1) =

π̃ (Xit, 0;θ1) + γ − log P̂ (0| Xit)

π̃ (Xit, 1;θ1) + γ − log P̂ (1| Xit)


and:

v (θ) =

V (Ξ1;θ)
...

V (ΞQ;θ)

 π̂ (θ1) =

 π̂ (Ξ1;θ1)
...

π̂ (ΞQ;θ1)


and:

Ψ̂ =

p̂T (Ξ1) . . . 0T

... . . . ...
0T . . . p̂T (ΞQ)

 Q̂ =


Q̂ (Ξ1)

...
Q̂ (ΞQ)


then:

v
(
θ1, θ̂2

)
=
[
I − βΨ̂Q̂

]−1
Ψ̂π̂ (θ1)

from which U (Xit, Iit;θ), and so pI=1 (θ1), are obtained easily.


