
Demand Estimation

Paolo Zacchia

Microeconometrics

Lecture 14



Demand estimation: overview
• Demand functions are a key component of economic theory

and model. How to estimate them empirically?

• This discussion starts by reviewing traditional approaches
to the econometric estimation of demand systems.

• More modern approaches to demand estimation are based on
limited dependent variable random utility models, which
are grounded on models of multinomial choice.

• This helps build up tools and concepts useful for introducing
the workhorse econometric model by Berry, Levinsohn and
Pakes (1995, BLP) for market-level product data.

• Lastly, this lecture overviews relevant extensions of the BLP
framework and the research frontier on the topic.



Traditional approaches to demand estimation
• Traditional models for demand estimation are based firmly

on microeconomic theory through explicit specifications
of the utility or the cost/expenditure functions.

• These models were developed with the objective of providing
decent approximations to the true – unknown – demand
systems, using flexible functional form specifications.

• The very first model in this class, perhaps, was the so-called
Linear Expenditure System (LES).

• The two main models that are sometimes still used nowadays
are the “translog” demand system and the “Almost Ideal
Demand System” (AIDS).

• Before proceeding, it is useful to characterize some common
notation and review some results of microeconomic theory.



Shared notation
In what follows, given a consumer indexed by i:

• yi = (Y1i, Y2i, . . . , YJi) are J products consumed by i;

• p = (P1, P2, . . . , PJ) are their corresponding J prices;

• Mi is the individual income of consumer i;

• si = (S1i, S2i, . . . , SJi) are J budget shares defined as:

Sji = PjYji

Mi
for j = 1, . . . , J ;

• U (yi, Mi) is the direct utility function for income Mi;

• V (p, Mi) is the indirect utility function for income Mi;

• C (p, Ui) is the expenditure/cost function for utility Ui.



Logarithmic Shepard’s Lemma
• Recall Shepard’s Lemma from microeconomic theory:

∂C (p, Ui)
∂Pj

= Y c
ji (pi, Ui)

where Y c
ji (p, Ui) is the Hicksian (compensated) demand for

product j.

• Observe that, if one works with logarithms:

∂ log C (p, Ui)
∂ log Pj

= Pj

C (p, Ui)
∂C (p, Ui)

∂Pj
= Sji (p, Ui)

which is an expression for the budget share Sji (p, Ui) of
product j as a function of prices p and utility Ui.

• One can work out an analogous result for Roy’s identity and
Marshallian, rather than Hicksian, demand.



Logarithmic Roy’s Identity
• Also recall Roy’s Identity from microeconomic theory:

−
(

∂V (p, Mi)
∂Pj

)(
∂V (p, Mi)

∂Mi

)−1
= Yji (pi, Mi)

where now Yji (p, Ui) is the Marshallian (uncompensated)
demand for product j.

• Similarly as before, if one works with logarithms:

−

∂ log V (p, Mi)
∂ log Pj

∂ log V (p, Mi)
∂ log Mi

= −

Pj

V (p, Mi)
∂V (p, Mi)

∂Pj

Mi

V (p, Mi)
∂V (p, Mi)

∂Mj

= Sji (p, Mi)

which is an expression for the budget share Sji (p, Mi) of
product j as a function of prices p and income Mi.



The elasticities of interest
The estimation of a demand system ideally allows to recover:

• the Marshallian price elasticities, for ℓ = 1, . . . , J :

ηPℓ
Yji

≡ Pℓ

Yji (p, Mi)
∂Yji (p, Mi)

∂Pℓ
= ∂ log Yji (p, Mi)

∂ log Pℓ

• . . . the income elasticity:

ηM
Yji

≡ Mi

Yji (p, Mi)
∂Yji (p, Mi)

∂Mi
= ∂ log Yji (p, Mi)

∂ log Mi

• . . . and the Hicksian price elasticities, for ℓ = 1, . . . , J :

ηPℓ
Y c

ji
≡ Pℓ

Y c
ji (p, Ui)

∂Y c
ji (p, Ui)
∂Pℓ

=
∂ log Y c

ji (p, Ui)
∂ log Pℓ

• . . . all related via the Slutsky equation ηPℓ
Yji

= ηPℓ
Y c

ji
−ηM

Yji
Mi.



Some general considerations

• All the models that follow are system of equations where the
endogenous variables are either yi, si or Misi. The prices
p are typically treated as exogenous.

• These models can be estimated on either individual-level
or “aggregate” (e.g. market-level) data, depending on the
available level of variation in the key variables.

• The individual microeconomic foundations may not hold on
average in the population (“aggregation problem”), but
they do hold for the AIDS, which indeed is “almost ideal.”

• Several extensions of the models presented hereinafter exist.
Typically, their objective is to make the models more general
and robust. Only the baseline models are reviewed here.



Linear Expenditure System (1/2)
• The Linear Expenditure System (LES) is most famously

associated with Geary (1954) and Stone (1955).

• The LES was originally conceived to make sense of household
expenditure patterns at a time of scant data availability.

• Assume the following utility function:

U (yi; Mi) =
J∏

j=1

{
(Yji − µj)βj · 1 [Yji > µj ]

}
where µj is the subsistence level for product j.

• The Marshallian demand for product j = 1, . . . , J is derived
as follows.

Yji = µj + βj

Pj

(
Mi −

J∑
k=1

Pkµk

)



Linear Expenditure System (2/2)
• This Marshallian demand yields an econometric model:

PjYji = αj + βjMi + εji

where εji is an additive consumer-specific error, and:

αj ≡
(

Pjµj −
J∑

k=1
Pkµk

)

is a product-specific constant. This model can be estimated
with household-level data about income Mi and expenditure
by product (category) PjYji.

• This model is interesting because the parameter βj allows
to calculate the income elasticity of demand, which is equal
to βj/Sji for consumer/household i.

• However, the model is simplistic and plagued by endogeneity.



Translog demand system (1/3)
• “Translog” stands for “trascendental logarithmic:” this

model was originally introduced by Christensen, Jorgenson,
and Lau (1975).

• The starting point is a specification of indirect utility.

log V (p, Mi) = α0 +
J∑

j=1
αj log

(
Pj

Mi

)
+

+ 1
2

J∑
j=1

J∑
k=1

βjk log
(

Pj

Mi

)
log

(
Pk

Mi

)

As usual, this is invariant to monotonic transformations.

• The “trascendental” part is the summation of logarithmic
cross-products, which is meant to approximate higher-order
curvatures of the true indirect utility function.



Translog demand system (2/3)
• Applying the logarithmic Roy’s identity here gives:

Sji =
αj +

∑J
k=1 βjk log

(
Pk
Mi

)
α +

∑J
k=1 βk log

(
Pk
Mi

)
where α =

∑J
j=1 αj and βk ≡

∑J
j=1 βjk for k = 1, . . . , J .

• For ℓ = 1, . . . , J , the Marshallian price elasticity is:

ηPℓ
Yji

= −1 [j = ℓ] + βjℓ/Sji −
∑J

k=1 βjk

α +
∑J

k=1 βk log
(

Pk
Mi

)
• . . . whereas the income elasticity of demand is as follows.

ηM
Yji

= 1 +
−
∑J

k=1 βjk/Sji −
∑J

j=1
∑J

k=1 βjk

α +
∑J

k=1 βk log
(

Pk
Mi

)



Translog demand system (3/3)
• To empirically estimate the model, econometricians typically

specify an additive error term εji so that the model can be
estimated by NLLS with household-level or aggregate data.

Sji =
αj +

∑J
k=1 βjk log

(
Pk
Mi

)
α +

∑J
k=1 βk log

(
Pk
Mi

) + εji

• Note: as
∑J

j=1 Sji = 1 for all i = 1, . . . , N , this means that
one out of J error terms is residually determined!

• Therefore, this is a model of J − 1 equations with J (J − 1)
right-hand side variables à la log (Pk/Mi) as well as J (J + 1)
parameters à la αj and βij . This calls for restrictions.

• Theory delivers the normalization α = −1, the symmetry
property βjk = βkj , and homogeneity: βk = σαk.



Almost ideal demand system (1/4)
• The “Almost Ideal Demand System” (AIDS), which is

leading among the traditional approaches, is associated with
the seminal contribution by Deaton and Muellbauer (1980).

• The starting point is a specification of the cost/expenditure
function for a representative consumer with Ui ∈ [0, 1].

log C (p, Ui) = α0 +
J∑

j=1
αj log (Pj) +

+ 1
2

J∑
j=1

J∑
k=1

β∗
jk log (Pj) log (Pk) + Uiγ0

J∏
j=1

P
γj

j

This follows from aggregation-invariant preferences.

• Homogeneity of this cost function demands restrictions:∑J
j=1 αj = 1, and

∑J
k=1 β

∗
jk =

∑J
j=1 β

∗
jk =

∑J
j=1 γj = 1.



Almost ideal demand system (2/4)
• Applying the logarithmic Shepard’s lemma here gives:

Sji = αj +
J∑

k=1
βjk log (Pk) + Uiγiγ0

J∏
j=1

P
γj

j

where βjk = 1
2

(
β∗

jk + β∗
kj

)
.

• Writing total expenditures Xi = C (p, Ui), solving for Ui,
and substituting gives:

Sji = αj +
J∑

k=1
βjk log (Pk) + γi log

(
Xi

P

)
where P is a price index defined as follows.

log (P ) = α0 +
J∑

j=1
αj log (Pj) + 1

2

J∑
j=1

J∑
k=1

βjk log (Pj) log (Pk)



Almost ideal demand system (3/4)
• Observe the similarity of log (P ) with log V (p, Mi) from the

translog model: Lewbel (1989) noted that both the translog
and the AIDS models can be nested into a more general one.

• The translog parts within the demand functions themselves
let interpret the AIDS as a good approximation of the true
system of demand functions (hence its name).

• For ℓ = 1, . . . , J , the Marshallian price elasticity is:

ηPℓ
Yji

= −1 [j = ℓ] +
βjℓ − γj

(
αℓ +

∑J
k=1 βℓk log (Pk)

)
Sji

• . . . whereas the income elasticity of demand is as follows.

ηM
Yji

= γj

Sji
+ 1



Almost ideal demand system (4/4)

• Like in the translog model, estimation requires the inclusion
of an additive error term εji; one out of J obtains residually.

Sji = αj +
J∑

k=1
βjk log (Pk) + γi log

(
Xi

P

)
+ εji

• This model should be estimated via NLLS if P is explicitly
made a function of all the parameters; in most applications
however using an external price index is preferred, as this
makes the system one of J − 1 (simpler) linear equations.

• Identification entails considerations similar to those from the
translog case: theory-based restrictions are thus necessary.

• Hence, the restrictions that ensure homogeneity of the cost
function and the symmetry property βjk = βkj are upheld.



Issues with the traditional approaches (1/2)
• The imposition of theoretical Slutsky “curvature conditions”

require even more, possibly complex, restrictions.

• With time series, autocorrelation in the errors complicates
the specification of the identifying restrictions.

• An important problem is the curse of dimensionality: the
number of parameters grows quadratically with the number
of products, which exacerbates any possible statistical issues.

• The estimation of so many cross-product price elasticities for
possibly unrelated products can quickly become too unstable
and therefore not credible.

• An implication of this curse is the “new good problem:”
specifically, researchers are unable to analyze the impact of
a new product prior to its introduction.



Issues with the traditional approaches (2/2)
• In general all these models were developed with great care for

the underlying theory, but with less regard for endogeneity.
The error terms are likely to include omitted variables!

• More generally, supply is absent from traditional models.
One notable attempt to incorporate supply is the model by
Bresnahan (1987), which inspired subsequent treatments of
the supply side in studies about market power.

• Traditional models do not account for similarity between two
products’ observable characteristics. Yet, cross-product
price elasticities arguably depend upon product similarities.

• Perhaps most importantly among all issues, heterogeneity
across consumers is totally ignored. This is likely to bias
the results whether based on individual or aggregate data.



Beyond traditional approaches
All these limitations stimulated methodological research that led
to the current modern takes on demand estimation.

A brief intellectual history is thus sketched.

1. It starts with the venerated model by Bresnahan (1987), to
detect collusion (a supply mechanism) in oligopolies.

2. It follows through with the analysis of the random utility
framework by Berry (1994).

3. It culminates with the full-fledged econometric treatment of
Berry’s original framework: the one by Berry, Levinsohn and
Pakes (1995), the BLP model, which is founded on a mixed
logit that is nested in a larger GMM model.

4. It then concludes with the important extension of BLP by
Nevo (2001), which focuses on statistical identification.



Detecting collusion in oligopolies (1/7)
• Industrial Organization is currently the “structural” field of

economics par excellance.

• Decades ago however it saw little empirical work. Classical
questions, like the one regarding the sudden 45% increase in
the US automobile production and sales in 1955 (that some
attributed to a temporary price war), were left unanswered.

• Paul Samuelson himself had allegedly once said that he. . .
would flunk any econometrics paper that claimed to provide
an explanation of 1955 auto sales.

• Yet Bresnahan (1987) defied Samuelson as he developed an
original model estimated via MLE that can be used to test
for collusion. The results suggest that a price war occurred.

• Although this model is now obsolete, it is still a classic and
has great instruction value.



Detecting collusion in oligopolies (2/7)
• Consider N types of cars each with quality Xi = X (zi,β)

being a function of one car’s characteristics zi (given some
parameters β). Qualities can be ordered from best to worst:
without loss of generality, Xi > Xh if i > h.

• Also consider some well-microfounded demand functions
of each car for each year t = 1, . . . , T :

QD
it = D (Pht, Pit, Pjt, Xht, Xit, Xjt,γ)

where Qit is the quantity of product i, Pit its price, h, i, j
are three consecutive products in the order of “qualities”
(with j > i > h) and γ are some parameters.

• This specification makes prices and quantities dependent in
equilibrium only on those of the “neighbors” of one product
in the product space.



Detecting collusion in oligopolies (3/7)
It is useful to elaborate on the particular demand function used
by Bresnahan. He assumes a simple linear utility for consumers:

U (X, P, v) = vX − (Y − P )

where Y is consumers’ income and v ∼ U (0, Vmax) their taste.
The total “mass” of the consumer base is given by ∆.

Given the previous example about product ordering, a marginal
consumer indifferent between i and h at time t has taste:

vhit = Pit − Pht

Xit − Xht

from which one obtains the demand function as follows.

QD
it = ∆

[
Pjt − Pit

Xjt − Xit
− Pit − Pht

Xit − Xht

]
This is based on Prescott and Visscher (1977) as well as Shaked
and Sutton (1983).



Detecting collusion in oligopolies (4/7)
Supply is standard: the profits from the sale of product i are:

πit = PitQit − c (Xit) Qit

with c (Xit) = µ exp (Xit). Bresnahan analyzes two scenarios.

1. Competition: the firm setting the price of product i takes
that of “neighbors” h and j as given, hence this FOC for Pit.

∂πit

∂Pit
= Qit + (Pit − c (Xit))

∂Qit (·)
∂Pit

= 0

2. Cooperation: the firm(s) selling two products i and j set
prices Pit and Pjt to maximize their joint profits, with FOCs
for price Pit as follows (and symmetrically for Pjt).

∂ [πit + πjt]
∂Pit

= Qit + (Pit − c (Xit))
∂Qit (·)

∂Pit

+ (Pjt − c (Xjt))
∂Qjt (·)

∂Pit
= 0



Detecting collusion in oligopolies (5/7)
• Bresnahan then defines several matrices Ht such that, in

each year t = 1, . . . , T :

h(ij)t =
{

1 cooperation between products i and j

0 competition between products i and j

and he characterizes several hypothetical scenarios for 1955
and surrounding years with corresponding matrices Ht.

• Thus, for a given choice of matrix Ht the supply function
can be written as

qS
it = S (Pht, Pit, Pjt, Xht, Xit, Xjt, Ht,γ,µ)

where the demand parameters γ enter via the derivative of
the demand functions implied in the supply FOCs.

• This sets up alternative counterfactuals about collusion.



Detecting collusion in oligopolies (6/7)
• By setting the equilibrium condition QD

it = QS
it = Q∗

it (and
similarly for prices) for each product i = 1, . . . , N in every
year t = 1, . . . , T , the reduced form is derived.

Pit = P ∗ (Xht, Xit, Xjt, Ht,β,γ,µ)
Qit = Q∗ (Xht, Xit, Xjt, Ht,β,γ,µ)

• This requires to develop the full-fledged solution given the
assumptions about demand and supply, and a matrix Ht.

• Introduce some error terms that make the model stochastic,
and endow them of distributional assumptions as follows.(

Pit − P ∗

Qit − Q∗

)
=
(

ξP
it

ξQ
it

)
= N

((
0
0

)
,

(
σ2

P 0
0 σ2

Q

))

• All these error terms are implicit functions of the reduced
form “predictions” of the model.



Detecting collusion in oligopolies (7/7)
• For any given matrix Ht, the model is estimated via MLE

using the following likelihood function.

L
(
β,γ,µ

∣∣∣∣{Ht, {pit, qit, zit}N
i=1

}T

t=1

)
=

=
T∏

t=1

N∏
i=1

1√
2πσ2

P

exp

−

(
ξP

it

)2

2σ2
P

 1√
2πσ2

Q

exp

−

(
ξQ

it

)2

2σ2
Q


• Tests about alternative matrices Ht0 and Ht1 (say, one for

“competition” and one for “collusion”) are performed via the
likelihood ratio approach, comparing alternative estimates.

CH = 2
[
log L

(
β̃, γ̃, µ̃

∣∣∣Ht1, . . .
)

− log L
(
β̂, γ̂, µ̂

∣∣∣Ht0, . . .
)]

• This way, Bresnahan was able to reject the hypothesis that
the the 1955 sales obtained from a competitive, rather than
collusive scenario (and vice versa).



Towards the workhorse BLP framework
• Bresnahan’s paper was ingenious and was met with success,

but its treatment of the demand side is very restrictive.

• This stimulated work on extensions of the multinomial logit
(baseline, nested, mixed, etc.) to provide a more flexible and
realistic treatment of the demand side.

• Notice that multinomial models are directly applicable when
researchers have access to the individual microdata about
Yi (for example, consumers’ individual purchases).

• How to make a good use of them in aggregate market-level
data, when researchers have access to the prices Pj , market
shares Sj and characteristics xj of individual products j?

• The final objective is to calculate cross-price elasticities
while overcoming the problems of traditional approaches to
demand estimation.



Why random utility models?
Random utility models: extended limited dependent variable
models with multinomial responses, are the backbone of modern
approaches to demand estimation for several reasons.

• They are grounded upon latent variable representations of
utility that is dependent on product characteristics.

• Thus, the number of parameters scales with the number of
characteristics – not with the number of products.

• They naturally allow for individual heterogeneity at the cost
of using simulation-based estimation approaches.

• They naturally allow estimation on both individual-level
as well as aggregate data.

Random utility models however do not solve endogeneity issues,
which must be appropriately accounted for.



Product choice with random utilities (1/8)
• All starts with the following random utility representation

of consumers’ preferences for one of J competing goods, as
in Berry (1994) and subsequent contributions.

Vji = xT
j βi − αPj + ξj + εji

• This expression features random coefficients βi for some
K product characteristics xj , and random shock ξj that
is product-specific: this is the unobserved “average quality”
of product j, net of (random) individual evaluations εji.

• With micro-data, this model could be numerically estimated
via mixed logit, provided that adequate measures are taken
to deal with ξj and possibly, the endogeneity of prices with
respect to εji.

• Typically though, only market-level data are available.



Product choice with random utilities (2/8)
Assume that, for k = 1, . . . , K, the random coefficients are:

βki = βk + σkυki

where σk ≥ 0 is a parameter and υki is an error term specific to
the i-th consumer. This is like a mixed logit model where matrix
Σ is restricted to its diagonal (tastes are uncorrelated across xj).

Thus, the model can be rewritten as:
Vji = δj + νji

where:
δj ≡ xT

j β − αPj + ξj

is the mean utility of product j, with β = (β1, . . . ,βK); while:

νji ≡
K∑

k=1
Xkjσkυki + εji

is the mean-zero, heteroscedastic random component of utility.



Product choice with random utilities (3/8)
• To make the model more realistic for use with market-level

data, assume the existence of an “outside good” j = 0.

• This can be thought of as the “outside option” of not buying
any of the competing J products.

• The mean utility of the outside good is normalized at zero.

δ0 = 0

• Consumers still have random preferences ν01 = V0i over it.

• Ultimately, consumers’ choice is determined as:

Yji = 1 ⇔ Vji = max {V0i, V1i, . . . , VJi}

for j = 0, 1, . . . , J (the choice set includes the outside good).



Product choice with random utilities (4/8)
Given a stochastic structure for νji, the market shares Sj that
are predicted by the model are, for k = 0, 1, . . . , J :

Sj (δ,X;σ) =
ˆ
RK

∏
k ̸=j

1 [δj + νji ≥ δk + νki] fν (ν,X;σ) dν

where:

• δ = (δ0, δ1, . . . , δJ) are the products’ mean utilities;

• σ = (σ1, . . . ,σK) are the loadings of the random coefficients;

• ν = (ν0i, ν1i, . . . , νJi) are consumer i’s random utilities;

• X =
[
x1 . . . xJ

]
is the random matrix of characteristics.

This provides a full specification of the demand system in terms
of market shares (share of consumers who buy product j) Sj .



Product choice with random utilities (5/8)
The key idea by Berry (1994) is to invert the demand system so
as to solve for δ, and thus estimate the key parameters through
the linear model:

δj (s) = xT
j β − αPj + ξj

where δj is implicitly expressed as a function of the market shares
s = (S0, S1, . . . , SJ), and where ξi is treated as an error term.

• This makes the model estimable on market-level data!

• This model may be estimated via OLS, however IV-2SLS is
perhaps preferable due to endogeneity concerns.

• The solution δj (s) embeds all consumers’ optimal choice.

• The key question is whether s can be uniquely solved for δ.
Leveraging Brower’s fixed point theorem, Berry shows that
a unique solution always exists.



Product choice with random utilities (6/8)
For example, if σ = 0 and εji ∼ Gumbel (0, 1) for j = 0, 1, . . . , J
and all individuals i, the model’s realization probabilities (market
shares) have the multinomial logit structure:

Sj (δ) = exp (δj)
1 +

∑J
k=1 exp (δk)

because exp (δ0) = 1. As this also implies:

Sj

S0
= exp (δj)

the solution for mean utilities is straightforward in this case.

δj = log (Sj) − log (S0) = xT
j β − αPj + ξj

While analytically convenient, this version of the model inherits
all the limitations of the multinomial logit, like homogeneity and
IIA (with implications in terms of price elasticities).



Product choice with random utilities (7/8)
Given a solution δ (s), how to address endogeneity in the mean
utility model? Berry (1994) treats the product characteristics xj

as exogenous, but he also allows for prices to be correlated with
unobserved product quality: E [Pjξj ] ̸= 0.

To address this, he suggests to leverage the supply side through
appropriate cost shifters, like in the canonical model of demand
and supply in partial equilibrium.

To this end, it is useful to write the First Order Conditions from
the maximization of firm profits in terms of share elasticities:

Pj = C (wj , ωj ;γ) + Sj

|∂Sj (Pj) /∂Pj |

where C (wj , ωj ;γ) is a marginal cost function, wj is a set of
cost shifters with parameters γ, and ωj an unobserved error.



Product choice with random utilities (8/8)
Suppose for example that the marginal cost function is linear.

C (wj , ωj ;γ) = wT
j γ + ωj

The objective is to jointly estimate a simultaneous system
of equations that deliver identification of α. Observe that here:∣∣∣∣∣∂Sj (Pj)

∂Pj

∣∣∣∣∣ = α
∂Sj (δj)

∂δj

and therefore the system in this case would be:

δj (s) = xT
j β − αPj + ξj

Pj = wT
j γ + 1

α

Sj

∂Sj (δj) /∂δj
+ ωj

which is typically relatively easy to handle once ∂Sj (δj) /∂δj is
derived from the choice probabilities. For example, in the simple
multinomial logit case it is ∂Sj (δj) /∂δj = Sj (1 − Sj).



The workhorse BLP framework (1/9)
• The idea of “inverting” market shares Sj for mean utilities

δj is smart, but at first it seemed hard to implement.

• Besides the simple, yet problematic multinomial logit case,
Berry (1994) showed that the model allows for closed form
solutions if the consumers’ choice problem has a nested logit
structure, or if the products are vertically differentiated like
in Shaked and Sutton (1983) and Bresnahan (1987).

• Yet this is not enough: a full solution to the general random
coefficients structure of the choice problem is necessary.

• This requires simulations, but it was not clear at first how
to embed them in the estimation framework.

• The importance of the contribution by Berry, Levinsohn and
Pakes (1995, BLP) lies in their solution for this problem.



The workhorse BLP framework (2/9)
• Given (δ,X;θ), with εji ∼ Gumbel (0, 1) for j = 0, 1, . . . , J ,

and given a set of simulated K-long vectors {υs}S
s=1, it is:

Ŝj (δ,X;σ) = 1
S

S∑
s=1

exp
(
δj + xT

j (Iσ)υs

)
∑J

k=1 exp
(
δk + xT

k (Iσ)υs
)

for j = 1, . . . , J , and where Var [us] = I for s = 1, . . . , S.

• Let ŝ (δ,X;σ) =
(
Ŝ1 (δ,X;σ) , . . . , ŜJ (δ,X;σ)

)
.

• Also let s = (S1, . . . , SJ) be the actual market shares.

• Berry, Levinsohn and Pakes (1995) show that the operator
T (δ;σ) : RJ → RJ defined as:

T (δ;σ) = δ + log (s) − log (ŝ (δ,X;σ))

is a contraction for δ with modulus that is less than one.



The workhorse BLP framework (3/9)
• Introduce the index m = 1, . . . , M to denote markets as the

unit of observation.

• Express zjm = (Z1jm, . . . , ZQjm) as the instruments vector
of length Q that is specific to product j and market m.

• Write the following moment conditions:

E

zjm

 δ̂jm (sm;σ) − xT
jmβ − αPjm

Pjm − wT
jmγ − 1

α

Sjm

∂Sjm (δjm) /∂δjm


 = 0

also written more compactly as E [g (qjm;θ)] = 0, where:

qjm = (Pjm, sm,wjm,xjm, zjm) ,

θ1 = (α,β,γ) ,

θ = (θ1,σ) .

• Note that identification requires that at least 2Q ≥ |θ|.



The workhorse BLP framework (4/9)
The BLP estimator is a GMM estimator.

θ̂BLP = arg min
θ∈Θ

[
gM,J (θ)

]T
A2Q

[
gM,J (θ)

]

with gM,J (θ) ≡ 1
MJ

M∑
m=1

J∑
j=1

g (qjm;θ) and weights A2Q.

This estimator is calculated via a famous nested fixed point,
“inner loop, outer loop” algorithm. At every iteration of θ:

• in the inner loop, δ̂m is calculated for each market m as:

δh+1
m = δh

m + log (sm) − log
(
ŝ
(
δh

m, Xm;σ
))

and iterating over h = 0, 1, 2, . . . until convergence;

• in the outer loop, the particular value of θ that minimizes
the GMM objective function is sought.



The workhorse BLP framework (5/9)
It is useful to recapitulate the “BLP algorithm.” Starting with a
“guess” of σ, iterate the following four sub-steps:

1. for m = 1, . . . , M , solve for δ̂m (sm, Xm;σ) using the inner
loop contraction proposed by BLP;

2. for m = 1, . . . , M and j = 1, . . . , J , evaluate the elasticity
components Sjm [∂Sjm (δjm) /∂δjm]−1 at δ̂m;

3. aggregate the market-level data and, given the elasticities
thus evaluated, derive an estimate of θ1 implied by σ using
IV-2SLS on the now linear demand and supply equations;

4. given such implicit estimates θ1 (σ), compute the empirical
moments gM,J (θ1 (σ) ,σ), hence the GMM objective;

until convergence at some σ̂BLP and θ̂1,BLP = θ1 (σ̂BLP ).



The workhorse BLP framework (6/9)

Some observations are due.

• Optimizing over θ1 given σ is simple (linear algebra suffices).
The numerical problem is to search for the optimal σ in the
outer loop. Also, the inner loop may slow down the search.

• According to a recent review (Berry and Haile, 2021): “while
many authors succeeded in implementing and customizing
the BLP algorithm, näıve implementations can easily fail.”

• The choice of the GMM weighting matrix A2Q and statistical
inference are both guided by the standard theory of GMM.

• The model allows for more general marginal cost functions
C (wj , ωj ;γ). In their original formulation, BLP even allow
for more general firm First Order Conditions, that obtain if
firms “control” multiple products (like in Bresnahan, 1987).



The workhorse BLP framework (7/9)
How to choose the instruments vector zim?

• Clearly, the price Pjm as well as the market share Sjm must
be excluded from it (they are endogenous).

• The standard “BLP instruments” are based on the product
characteristics of other, potentially substitute, products.
The key idea is that substitutability affects markups/prices
and market shares. An instrument set for Xkjm may include:

z(kjm) =
(
Xkjm

∑
ℓ̸=j,ℓ∈Jjm

Xkℓm
∑

ℓ̸=Jjm
Xkℓm

)
where Jjm is the set of products by the firm that produces
product j in market m.

• A similar argument applies to cost shifters, like the costs
for materials or energy, taxes or tariffs.

• Other instruments have been proposed in the literature.



The workhorse BLP framework (8/9)
• Recall that the main objective of demand estimation is the

calculation of price elasticities. How is this performed in the
BLP framework? Here, treat θ as known.

• Own-price elasticities are expressed in given a market m as:

η
Pjm

Sjm
= −α

Pjm

Sjm

ˆ
RK

pjm (ν,X) [1− pjm (ν,X)] fν (ν,X) dν

• . . . while cross-price elasticities are as follows, for ℓ ̸= j.

ηPℓm
Sjm

= α
Pjm

Sjm

ˆ
RK

pjm (ν,X) pℓm (ν,X) fν (ν,X) dν

• Here pℓm (ν,X) is the logit probability for ℓ = 1, . . . , J .

pℓm (ν,X) ≡
exp

(
δℓm + xT

ℓm (Iσ)ν
)

∑J
k=1 exp

(
δkm + xT

km (Iσ)ν
)



The workhorse BLP framework (9/9)
• BLP tested their framework for the first time on data about

the US market for cars from 1971 to 1990.

• Their definition of “market” is thus a year, which led them
to take measures to address autocorrelation of ξjm and ωjm.

• Their estimates θ̂BLP and their simulation draws {υs}S
s=1

are used to simulate own-price and cross-price elasticities in
each market m; the results are then averaged out.

• Estimates of a restricted model without random coefficients
(σ = 0) return implausible, too inelastic demand functions
for many products. The extended BLP model delivers more
realistic estimates, especially in very competitive segments.

• Random coefficients also dramatically improve realism of the
price elasticities to the outside good (that is, buying no car).



The improved BLP framework (1/5)
• The current standard for estimation of the BLP model was

set by Nevo (2001) with his study on the ready-to-eat cereal
industry. He also allows for random coefficients for price.

Vji = xT
j βi − αiPj + ξj + εji

• The random coefficients (αi,βi) are now specified as:(
αi

βi

)
=
(
α

β

)
+ Πdi + Συi

where υi = (υP i, υ1i, . . . , υKi) like in BLP (with the addition
of υP i), di = (d1i, . . . , dDi) is a vector of D demographic
characteristics typical of consumer i’s market, while Π and
Σ are two matrices of parameters of dimension (K + 1) × D
and (K + 1) × (K + 1) respectively.

• This leads to a more realistic treatment of consumers’ choice:
preferences vary as a function of a market’s demographics.



The improved BLP framework (2/5)
• Write θ = (θ1,θ2), where θ1 is as before while θ2 = (Π, Σ).

Usually Σ is restricted to the diagonal like in BLP: Σ = Iσ.

• Also write the random vector rj = (Pj ,xj) of length K + 1.
The market share of product j, for j = 1, . . . , J , obtains as:

Ŝj (δ,p,X;θ2) = 1
S

S∑
s=1

exp
(
δj + rT

j [Πds + Συs]
)

∑J
k=1 exp

(
δk + rT

k [Πds + Συs]
)

where p = (P1, . . . , PJ); {υs}S
s=1 is a vector of simulation

draws as before, now each of length K + 1. . .

• . . . whereas {ds}S
s=1 is a set of simulation draws, each of

length D, extracted from some true empirical distribution.

• In this setup, the contraction mapping works like in BLP.

δh+1
m = δh

m + log (sm) − log
(
ŝ
(
δh

m, pm, Xm;θ2
))



The improved BLP framework (3/5)
• The GMM problem is once again linear in θ1 and non-linear

in θ2. Using a Quasi-Newton optimizer with a user-supplied
gradient, Nevo speeds up the outer loop search over (Π,σ).

• Nevo estimates his augmented BLP model on quarterly-level
data (1988-1992) about 25 brands of ready-to-eat cereals in
65 cities. His definition of “market” is thus a city-quarter.

• Let t = 1, . . . , T index time. Nevo’s data are rich enough to
estimate product (and possibly city-level) fixed effects ξj .

δjmt = xT
jmtβ − αPjmt + ξj + ∆ξjmt

• The distributions of dimt used for simulating market shares
are taken from a city’s yearly Current Population Survey. In
particular, Nevo uses the empirical distributions of income,
age and number of children.



The improved BLP framework (4/5)
• Another important innovation by Nevo is that he includes a

product j’s price in other cities in the instruments set.

• This is necessary for him because the product characteristics
xjmt and cost shifters wjmt have little statistical variation
at the city-quarter level the data.

• The argument is that conditional on product fixed effects ξj ,
prices in other cities Pjnt are correlated to Pjmt for n ̸= m,
but are still exogenous in the sense that E [∆ξjmt| Pjnt] = 0.

• This allows to simplify the model by removing the supply
side, and avoid assumptions about the cost function.

• This is important for the sake of Nevo’s research question,
which is about finding an explanation of the high price-cost
margins (PMC) in this particular industry.



The improved BLP framework (5/5)
• With this shortcut, Nevo is able to estimate the marginal

cost MCjmt via the model estimates of demand elasticities
and the following standard single-product pricing rule.

Sjmt =
∣∣∣∣∣∂Sjmt (Pjmt)

∂Pjmt

∣∣∣∣∣ (Pjmt − MCjmt)

• Nevo also considers extension of this pricing rule that allow
for multi-product firms or collusive behavior à la Bresnahan
(1987). Specifically, the general pricing rule at time t is:

s (pt) = [Ht ◦ S (pt)] (pt − ct)

where s (pt) are the products’ market shares as a function of
prices pt, ct is a vector of marginal costs, S (pt) is a matrix
of price elasticities of size J × J , and Ht is as in Bresnahan.

• The PMCs predicted by the single-product rule are closer to
the observed PMCs: thus, Nevo rules out collusive behavior.



The frontier in demand estimation
While somewhat dated, the BLP model in its Nevo version is still
the dominant framework for demand estimation. The extensions
and applications that accumulated over time did not innovate the
core methodology.

Present-day successful research that applies the BLP framework
satisfies at least one of the following three conditions:

1. it addresses an important research question;

2. it complements BLP estimation with reduced form evidence;

3. it utilizes novel instruments in the GMM problem.

On the methodological side, interest for non-parametric methods
that would let get away with the parametric BLP assumptions is
currently growing; see e.g. the review by Berry and Haile (2021).



Estimation of nested demand structures (1/3)

A relevant extension of the workhorse BLP model is the random
coefficient nested logit (RNCL) model originally proposed by
Brenkers and Verboven (2006).

This model assumes that the εji shocks have the same dependence
structure leading to a nested logit model (Lecture 13), hence:

Sℓj (δ,X;σ, ρ) =
ˆ
RK

exp (ρIℓ)
1 +

∑L
l=1 exp (ρIl)

·

·
exp

((
δℓj + xT

ℓj (Iσ)υs

)/
ρ
)

∑Jℓ
k=1 exp

((
δℓk + xT

ℓk (Iσ)υs

)/
ρ
)fν (ν,X;σ) dν

where products are identified by limbs ℓ = 1, . . . , L as well as
branches j = 1, . . . , Jℓ, and ρ is the “anti-correlation” parameter
typical of the nested logit, taken here as constant across limbs.



Estimation of nested demand structures (2/3)

In the term exp (ρIℓ)
[
1 +

∑L
l=1 exp (ρIl)

]−1
, it is for l = 1, . . . , L:

Il = log

 Jℓ∑
l=1

exp
((

δlk + xT
lk (Iσ)υs

)/
ρ
)

which represents the “deterministic value” of limb l for a single
consumer. Note the implicit inclusion of an outside option.

As already shown by Berry (1994), without random coefficients
(that is, σ = 0) this model becomes a standard nested logit and
an analytic solution for δℓj exists:

δℓj = log (Sℓj) − log (S0) − ρ log
(
S j|ℓ

)
= xT

j β − αPj + ξj

where S j|ℓ is the “conditional” share of j within limb ℓ.



Estimation of nested demand structures (3/3)

For reasons about interpretation of the model’s parameters, the
RNCL has become popular to study demand in markets with a
clear nested structure of products, such as for example alcoholic
beverages (e.g. “beer” versus “whiskey” as distinct limbs).

Estimation proceeds pretty much like in BLP, but with a major
difference, as the contraction mapping must be “dampened” by
parameter ρ (Grigolon and Verboven, 2014):

δh+1
m = δh

m + ρ
[
log (sm) − log

(
ŝ
(
δh

m, Xm;σ
))]

which is itself estimated in the outer loop. A problem can occur
if ρ is close to zero, as the updates h become arbitrarily slow.

Intuitively, ρ close to zero implies high correlation (substitution)
between products within a limb, and hence more “noise.”



Current best practices in demand estimation

Originally, the BLP model was estimated via “quasi-raw” custom
code (often in MATLAB). The “inner loop, outer loop” algorithm
was very difficult to code from scratch (and it still is).

Nowadays, researchers rely on established libraries for languages
such as Python or R; the PyBLP library for Python is especially
popular. Practitioners identified over time some “best practices”
to facilitate and improve BLP estimation.

These practices are reviewed by Conlon and Gortmaker (2020),
the authors of PyBLP, and include:

1. projection methods to incorporate many fixed effects ξj ;

2. techniques and “tricks” to facilitate numerical optimization;

3. evaluations of different instruments for efficiency’s sake.


