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Production function estimation: overview
• Like demand functions, production functions are ubiquitous

in economic theory and models. Like demand functions, they
are also surprisingly difficult to estimate. The main issue is
one of the omitted variable bias kind.

• Any decent attempt for a solution shall be based upon panel
data. Direct panel data approaches are thus reviewed.

• The conventional standard is based upon control function
methods in the modern formulation by Ackerberg, Caves and
Frazer (2015). They are at the center of this lecture.

• As noted by Wooldrdige (2009) these approaches are tightly
connected with classical panel data approaches.

• From them, both extensions/applications (De Loecker, 2011)
and critiques (Gandhi, Navarro and Rivers, 2020) sprang up.



Why estimating production functions?
• In many empirical studies, interest falls on estimating total

factor productivity (TFP). In a Cobb-Douglas setting:

log TFPi = log Yi − βK log Ki − βL log Li

thus, consistent estimators β̂K and β̂L allow to evaluate (log)
TFP as the regression residual. This extends to more general
input sets, other functional forms, et cetera.

• Production function estimation allows to measure markups
(De Loecker and Warzynski, 2012). By cost minimization:

ηXki
Yi

= Xki

Yi

∂F (X1i, . . . , XKi)
∂Xki

= µiZki

where µi is firm i’s markup, F (·) is its production function,
Zki is share of the k-th input (Xki) over revenue, while ηXki

Yi
is

the corresponding output elasticity (within a Cobb-Douglas
setting it equals βk). Solving for µi requires estimating ηXki

Yi
.



The transmission bias (1/3)
• Recall the “log-log” production function model motivated on

a Cobb-Douglas functional form from Lecture 7.

log Yi = α + βK log Ki + βL log Li + ωi

• As discussed in Lecture 12, the regressors are thought to be
endogenous: E [ωi| log Ki] ̸= 0; E [ωi| log Li] ̸= 0.

• The motivation is that the error term ωi is likely to subsume
some unobserved input, which is “transmitted” to inputs
like capital and labor because of complementarity, as per the
First Order Conditions from profit maximization:

logβK + α + (βK − 1) log Ki + βL log Li + ωi = log PK

logβL + α + βK log Ki + (βL − 1) log Li + ωi = log PL

where PK is the price of capital while PL that of labor. This
“transmission bias” was originally noted by Andrews and
Marschack (1944).



The transmission bias (2/3)
• From a theoretical standpoint, the transmission bias applies

only if ωi is observed by firms when Ki and Li are chosen.
Timing is key for production function estimation!

• Error terms of different kind might pose additional problems.
For example, Yi is typically not calculated directly but must
obtained by deflating firm revenues Ri: Yi = Ri/Pi. Here
Pi is the price of firm i’s goods or services.

• However, typically researchers do not observe Pi but Ps(i), a
price index for firm i’s industry s (i). The model becomes:

log Ri − log Ps(i) = α + βK log Ki + βL log Li + ϖi + ωi

where ϖi = log Pi − log Ps(i) is another error term.

• If ϖi is random it poses no problem to estimation. However,
there are typically reasons to think that it is not random.



The transmission bias (3/3)
• Issues about deflating variables can also apply to right-hand

side regressors (inputs) express in monetary values, thereby
leading to measurement error.

• This discussion suggests that information about firm-specific
prices might help! Unfortunately, this is rarely available or
accurate in firm-level data.

• In particular, if PK and PL were observable and had enough
exogenous variation they would work as great instruments.
Unfortunately, those two conditions are hardly satisfied.

• If PK and PL are observed with little variation they may still
be exploited: in traditional approaches (e.g. McElroy, 1978)
they serve direct estimation of the First Order Conditions.

• These traditional approaches however can be problematic if
some inputs, like capital, are chosen dynamically.



More general production functions
• The problem can be at least in part mitigated by including

other K inputs (X1i, . . . , XKi) into the model.

log Yi = α + βK log Ki + βL log Li +
K∑

k=1
βXk

log Xki + ωi

The whole set of inputs is difficult to observe by researchers,
but one can often see the total cost of materials Mi.

• An approach that circumvents the need to observe Pi is:

log Vi = α + βK log Ki + βL log Li + ωi

where Vi is a firm’s value added. Note, however, that this
is a model for value added, not for gross output Yi.

• A more general CES specification of the production function
(of which the Cobb-Douglas is a special case, see Lecture 11)
hardly helps, because the transmission bias still occurs.



Translog production functions
• To address concerns about the realism of the Cobb-Douglas

specification, one can use a translog one, which is a better
approximation of the (unknown) true production function.

log Yi = α + βK log Ki + βL log Li+
+ γKK (log Ki)2 + γLL (log Li)2 +

+ γKL (log Ki) (log Li) + ωi

• Suitable theory-driven restrictions on the parameters may
apply, if necessary (example: constant returns to scale).

• There is nothing that prevents OLS estimation of this model.
Yet this is about specification, not identification: a translog
model does not prevent the transmission bias.

• With many inputs Xki a curse of dimensionality occurs, not
unlike in translog models for demand estimation. Here, this
is likely to lead to issues of multicollinearity.



Direct panel data approaches (1/5)
• Consider a Cobb-Douglas production function model like the

one from Lecture 7, but adapted to panel data:

yit = αi + βKkit + βLℓit + ωit + εit

where:

yit ≡ log Yit

kit ≡ log Kit

ℓit ≡ log Lit

are logarithms of random variables and not realizations. This
is a notational convention typical of production functions.

• Here, the log of “total” productivity Ait is split as:

log Ait = αi + ωit + εit

that is, between a constant factor αi and two time-varying
factors ωit and εit that are discussed next.



Direct panel data approaches (2/5)
• Why a distinction between two time-varying components of

the error term? Whereas part of the error can be treated as
exogenous:

E [εit| kit, ℓit] = 0

(think about lucky events), the other part may not:

E [αi, ωit| kit, ℓit] ̸= 0

as firm adapt their inputs kit, ℓit to their own circumstances.

• Suppose that ωit = 0 for all i = 1, . . . , N and t = 1, . . . , T ,
as if the only unobserved inputs are constant in time: αi.

• The model can be thus estimated via fixed effects regression.
Yet the empirical practice has shown that this typically leads
to unrealistically small estimates of βK ; intuitively, βK

is identified off insufficient time variation in kit.



Direct panel data approaches (3/5)
• Now reintroduce the time-varying endogenous error ωit, and

suppose it follows an AR(1) process:
ωit = ρωi(t−1) + ξit

where in principle ρ ∈ (−1, 1), though presumably ρ ∈ (0, 1).

• The random shock ξit is called the “innovation” term of the
endogenous unobserved productivity. This terminology and
notation are shared with more general decompositions of ωit.

• Because ξit is “new,” it is safe to assume:

E
[
ξit

∣∣∣∆ki(t−s), ∆ℓi(t−s)
]

= 0

for s ≥ 1. This also applies to υit ≡ ξit + εit − ρεi(t−1).

• The lagged main model, multiplied by ρ, writes as follows.
ρyi(t−1) = ραi + βKρki(t−1) + βLρℓi(t−1) + ρωi(t−1) + ρεit



Direct panel data approaches (4/5)
• By “ρ-differencing” the original production function, that is

by subtracting the previous equation from both sides, it is:

yit − ρyi(t−1) = αi (1 − ρ) + βK

(
kit − ρki(t−1)

)
+ βL

(
ℓit − ρℓi(t−1)

)
+ υit

and ωit vanishes. This yields a typical dynamic model for
panel data, as per the framework outlined in Lecture 12.

• A standard “System GMM” estimation approach is based
on moments in differences à la Blundell and Bond like:

E
[(

∆ki(t−s)
∆ℓi(t−s)

)
(αi (1 − ρ) + υit)

]
= 0

for s ≥ 2. Observe that this approach is valid if E [kisαi] ̸= 0
and E [ℓisαi] ̸= 0 are constant in time, which occurs under
the conditions specified by Blundell and Bond (1998).



Direct panel data approaches (5/5)
• While theoretically sound, even this approach has not stood

the test of empirical practice all too well.

• There are two intertwined problems: instruments for high s
appear to be weak, and overidentification/exogeneity tests
(along with tests for the autocorrelation of the residuals)
suggest to select values of s that are even higher than 2.

• In short, ωit cannot be reduced to an AR(1) process. Taking
instruments further back in time to account for that is risky.

• Improvements are obtained by adding to the GMM problem
some moments in levels à la Arellano and Bond (1991):

E
[(

ki(t−s)
ℓi(t−s)

)
∆υit

]
= 0

for s ≥ 2. However, the approach is still not very popular.



Control function methods: overview
• The so-called control function methods for the estimation

of production functions are semi-structural methods based
on panel data that impose limited assumptions on ωit.

• Estimation is based on semi-parametric, non-linear control
functions for ωit, proxied by some given production inputs.

• They are grounded on assumptions about the timing of firm
decisions about their production inputs.

• The original method was devised by Olley and Pakes (1996;
OP); there, the control function is based on investment Iit.

• Levinsohn and Petrin (2003; LP) proposed an improvement
via a control function based on the cost of materials Mit.

• Finding that both methods are flawed, Ackerberg, Caves and
Frazer (2015; ACF) developed a suitable alternative.



Proxying unobservables with investment (1/9)
• What follows is an exposition of the OP method that adopts

the same notation as in the critical summary by ACF.

• Let the model be as follows:

yit = β0 + βKkit + βLℓit + ωit + εit

where β0 is constant and where all unobserved heterogeneity
is embedded into the so-called productivity shock ωit.

• Instead, εit is called transitory shock because, unlike ωit,
it is independent of both its past and future realizations.

• In what follows, denote firm i’s investment at time t as Iit,
and let iit ≡ log Iit. This choice is somewhat unfortunate (i
is duplicated) but is traditional in both OP and ACF.

• It is useful to restate the original OP assumptions as ACF
also did. The OP procedure supposedly rests on them.



Proxying unobservables with investment (2/9)

Assumption 1
Information set. The firm’s information set at at time t, that
is It, includes current and past productivity shocks {ωiτ }t

τ=0
but does not include future productivity shocks {ωiτ }∞

τ=t+1. The
transitory shocks satisfy E [εit| It] = 0.

Assumption 2
First Order Markov. Productivity shocks evolve according to
the probability distribution

P
(

ωi(t+1)

∣∣∣ Iit

)
= P

(
ωi(t+1)

∣∣∣ωit

)
.

This distribution is known to firms and stochastically increasing
in the conditioned productivity shock ωit.

Both assumptions are commented next, alongside Assumption 3.



Proxying unobservables with investment (3/9)
Assumption 3
Timing of input choices. Firms accumulate capital according
to

kit = κ
(
ki(t−1), ii(t−1)

)
where investment ii(t−1) is chosen in period t−1. The labor input
ℓit is non-dynamic and chosen at t.

Some comments on the assumptions so far are due.

1. Firms cannot foresee the future (short of guessing it).

2. Current productivity ωit is a sufficient statistic for predicting
the future ωi(t+1).

3. Capital is completely (pre-)determined at time t: this is the
key assumption (it takes time to buy, install new equipment).
Labor is non-dynamic in the sense that today’s ℓit does not
affect future profits (firms are free to fire workers).



Proxying unobservables with investment (4/9)

Assumption 4
Scalar unobservable. Firms’ investment decisions are given by

iit = ft (kit, ωit) .

Assumption 5
Strict monotonicity. ft (kit, ωit) is strictly increasing in ωit.

Here are brief comments for these two additional assumptions.

4. Investment depends on capital and productivity as they are
the only state variables (labor is not since it is non-dynamic).

5. Monotonicity is implied by Assumption 2 and the underlying
dynamic optimization problem.

Note: all firms have the same ft (·), though it varies over time.



Proxying unobservables with investment (5/9)
• These assumptions motivate the OP estimation approach,

which proceeds in two stages.

• The key idea is to “invert” the monotonic ft (kit, ωit) for ωit:

ωit = f−1
t (kit, iit)

so as to obtain a control function for the productivity shock.

• This delivers a so-called first stage that identifies βL:

yit = β0 + βKkit + βLℓit + f−1
t (kit, iit) + εit

= βLℓit + Φt (kit, iit) + εit

where Φt (kit, iit) is a composite function that is treated non-
parametrically. This is framed via a moment condition.

E [εit| It] = E [yit − βLℓit − Φt (kit, iit)| It] = 0



Proxying unobservables with investment (6/9)
• The second stage identifies βK . First, by Assumption 2:

ωit = E [ωit| It−1] + ξit = g
(
ωi(t−1)

)
+ ξit

where E [ωit| It−1] = E
[
ωit| ωi(t−1)

]
and E [ξit| It−1] = 0.

• Substituting this into the model gives:

yit = β0 + βKkit + βLℓit + g
(
ωi(t−1)

)
+ ξit + εit

where ωi(t−1) = Φt−1
(
ki(t−1), ii(t−1)

)
−β0 −βKki(t−1) as per

the previous definition of the composite function Φt (·). Here
g (·) is also treated non-parametrically.

• This yields another moment condition.

E [ξit + εit| It−1] = E
[
yit − β0 − βKkit − βLℓit−

− g
(
Φt−1

(
ki(t−1), ii(t−1)

)
− β0 − βKki(t−1)

) ∣∣∣It−1
]

= 0



Proxying unobservables with investment (7/9)
• By expressing It as a set of instruments: typically, suitable

lags of ki(t−s), ii(t−s) and ℓi(t−s) for s = 0, 1, . . . , t − 1, one
can easily recast the moment conditions in a way amenable
to GMM estimation (via the Law of Iterated Expectations).

• The non-parametric functions Φt (·) and g (·) are expressed
in the empirical model via polynomial series (typically of
third or fourth degree) of their arguments.

• Ideally, both sets of moments shall be jointly estimated (Ai
and Chen, 2003; Wooldridge, 2009), but the presence of the
two non-parametric functions can make this cumbersome.

• The popular approach is thus to estimate the two stages in
sequence. In the second stage, Φt−1 (·) is substituted by:

φ̂i(t−1) = Φ̂ t−1
(
ki(t−1), ii(t−1)

)
as predicted by the first stage (a “plug-in” approach).



Proxying unobservables with investment (8/9)
• In their original paper, OP applied their method to estimate

production functions in the US telecommunications industry
of their time (1963-1987).

• They also included a firm’s age ait in their control functions,
but this is not common nowadays.

• Since they worked with an unbalanced sample drawn from an
evolving industry, all their theoretical results were obtained
conditional on firm survival (not “exiting”). They computed
estimates P̂it of a firm’s survival probability at time t.

• Their first stage was as follows:

yit = βLℓit +
4−m−n∑

l=0

4−n∑
m=0

4∑
n=0

ϕlmnil
itk

m
it an

it + εit

giving φ̂it =
∑4−m−n

l=0
∑4−n

m=0
∑4

n=0 ϕ̂lmnil
itk

m
it an

it for later use.



Proxying unobservables with investment (9/9)
• Their second stage was instead as follows, given β̂L (the first

stage estimate of βL) and φ̂it. They estimated it via NLLS.

yit − β̂Lℓit = β∗
0 + βAait + βKkit+

+
4−n∑
m=0

4∑
n=0

γmnP̂ m
it

(
φ̂i(t−1) − βAai(t−1) − βKki(t−1)

)n
+

+ ξit + εit

• They experimented with a kernel estimator of the second
stage as well, regressing yit − β̂Lℓit − βAait − βKkit on P̂it

and on the first lag of the composite term φ̂it −βAait −βKkit

for given (βA,βK) fully non-parametrically, then searching
for the pair (βA,βK) that minimizes the squared residuals.

• Their procedure delivers realistic estimates, yet very close to
baseline OLS. There is little/no gain from kernel estimators.



Proxying unobservables with materials (1/4)
• Some drawbacks of the OP approach were noted quite soon.

• First, Assumption 5 is hard to verify, because it depends on
a difficult dynamic programming problem.

• Relatedly, it invalidates the approach for those quite frequent
observations where investment data is “lumpy” (iit = 0).

• Second, Assumption 4 is too stringent: it rules out any other
dynamic factors affecting investment iit – yet function ft (·)
is constant across firms (Griliches and Mairesse, 1998).

• To circumvent this, LP proposed to base the control function
on the (logarithmic) cost of materials: mit = log Mit (often
available in the data). Their baseline model is as follows.

yit = β0 + βKkit + βLℓit + βM mit + ωit + εit



Proxying unobservables with materials (2/4)

LP replace OP’s Assumptions 4 and 5 with the following ones.

Assumption 4b
Scalar unobservable. The intermediate input demand of firms
is given by

mit = ft (kit, ωit) .

Assumption 5b
Strict monotonicity. ft (kit, ωit) is strictly increasing in ωit.

These two assumptions still allow inversion of ft (·) for ωit:

ωit = f−1
t (kit, mit)

yet evade the Griliches-Mairesse critique. Since mit is a variable
(non-dynamic) input, heterogeneous dynamics is not a concern.



Proxying unobservables with materials (3/4)

• The LP first stage identifies βL, like in OP.

E [εit| It] = E [yit − βLℓit − Φt (kit, mit)| It] = 0

• The LP second stage identifies both βK and βM instead.

E [ξit + εit| It−1] =

= E
[
yit − β0 − βKkit − βLℓit − βM mit−

− g
(
Φt−1

(
ki(t−1), mi(t−1)

)
− β0−

− βKki(t−1) − βM mi(t−1)
)∣∣∣It−1

]
= 0

• Apart from this, estimation is implemented pretty much like
in OP, as polynomial series approximate the non-parametric
components of the moment conditions.



Proxying unobservables with materials (4/4)
• LP originally applied their extension of the OP method on

a Chilean manufacturing census panel dataset for 1979-1986
(which was quite popular) focusing on four large industries.

• They further add two more inputs log Xkit to their estimated
model: fuel and electricity, observed in their Chilean dataset.
Yet they mainly use log-materials mit in the control function.

• While OP calculate their standard errors analytically, using
results from a separate paper (Pakes and Olley, 1995), LP
circumvent this “difficult task” (ibidem) by bootstrapping.

• They provide nice specification tests about the choice of the
proxy and the monotonicity assumption.

• They show that their empirical estimates differ from baseline
OLS in a more marked way than OP’s estimates do.



The functional dependence problem (1/3)
• The key contribution by ACF was to show that both OP and

LP suffer from a so-called “functional dependence problem”
that invalidates their first stages: βL is not really identified.

• This clearly implies that also their second stage is flawed.

• The problem is best illustrated in the LP setting. Consider
the profit maximization First Order Condition for Mit:

βM KβK
it LβL

it MβM −1
it exp (β0 + ωit) = PM

Pi

where PM is the price of Mit. This implicitly gives ft (·).

• Inverting for ωit and substituting back into the production
function yields a “first stage” that does not depend on βL.

yit = log
( 1
βM

)
+ log

(
PM

Pi

)
+ mit + εit



The functional dependence problem (2/3)
• This result comes from a fully parametric treatment of ft (·),

but it can be generalized. Suppose the labor input follows:

ℓit = ht (kit, ωit)

similarly to mit. Then, the “inversion” step gives:

ℓit = ht

(
kit, f−1

t (kit, mit)
)

hence, ℓit cannot be non-parametrically identified separately
from mit (as ℓit is a function of mit).

• Formally, this implies that the following random matrix:

HL = E
[
[ℓit − E (ℓit| kit, mit)] (ℓit − E [ℓit| kit, mit])T

]
is not positive definite, implying non-identification of βL in
the “partially linear” LP first stage (Robinson, 1988).



The functional dependence problem (3/3)
A similar discussion also applies to the OP model. Adding prices
to ft (·) and ht (·) would not break functional dependence (prices
work best as IVs) neither in OP nor in LP.

How to break it, then? ACF discussed three theoretical options.

1. There is some exogenous “optimization error” in ℓit (e.g.
workers fall sick) but similar optimization error in mit would
re-introduce the problem, and violate Assumption 4.

2. The information set It that informs input choices is different
for ℓit and mit: this occurs for example if mit is chosen before
ℓit and new information becomes available in between (but
not the reverse).

3. Only in OP, ℓit is non-dynamic and chosen before iit.

These are all unlikely scenarios. Ultimately, one needs a shifter
of the control function external to the production function.



The modern control function approach (1/5)
• ACF suggest a more conservative approach that accounts for

the functional dependence problem.

• Their analysis is restricted to a “value added” specification:

yit = β0 + βKkit + βLℓit + ωit + εit

where yit = log Vit is now the logarithm of value added Vit.
No attempt is made at identifying a coefficient for mit.

• Materials still enter the grand production function for gross
output Yit, but in a way that breaks functional dependence.

• This occurs for example in a Leontiev specification in value
added and materials (this can be generalized).

Yit = min
{

KβK
it LβL

it exp (β0 + ωit) ,βM Mit

}
• ACF provide updated versions of the OP-LP assumptions.



The modern control function approach (2/5)

Assumption 3c
Timing of input choices. Firms accumulate capital according
to

kit = κ
(
ki(t−1), ii(t−1)

)
where investment ii(t−1) is chosen in period t−1. The labor input
ℓit has potentially dynamic implication and it is chosen at period
t, t − 1 or t − b, with 0 < b < 1.

Assumption 4c
Scalar unobservable. The intermediate input demand of firms
is given by

mit = f̃t (kit, ℓit, ωit) .

Assumption 5c
Strict monotonicity. f̃t (kit, ℓit, ωit) is strictly increasing in ωit.



The modern control function approach (3/5)
• Their revised Assumption 3 allows labor to be dynamic.

• More crucially, their revised Assumptions 4 and 5 formulate
“conditional” input demand functions that fully account for
functional dependence even between non-dynamic inputs.

• The first stage proceeds similarly as in OP and LP:

ωit = f̃−1
t (kit, ℓit, mit) .

Let Φ̃t (kit, ℓit, mit) = β0 + βKkit + βLℓit + f̃−1
t (kit, ℓit, mit)

so as to construct a proper moment condition.

E [εit| It] = E
[
yit − Φ̃t (kit, ℓit, mit)

∣∣∣ It

]
= 0

• The first stage is similar to LP’s, but it does not feature the
term βLℓit which is embedded in the control function.

• Hence, this yields a first stage estimate ̂̃φt = ̂̃Φt (kit, ℓit, iit).



The modern control function approach (4/5)
• It is the ACF second stage that identifies both βK and βL.

The relative moment condition is as follows.

E [ξit + εit| It−1] = E
[
yit − β0 − βKkit − βLℓit−

− g
(
Φt−1

(
ki(t−1), ℓi(t−1), mi(t−1)

)
−

− β0 − βKki(t−1) − βLℓi(t−1)
)∣∣∣It−1

]
= 0

• This is estimated by replacing Φt−1
(
ki(t−1), ℓi(t−1), mi(t−1)

)
with ̂̃φt−1, as in OP and LP.

• Relative to OP and LP, the second stage needs at least one
additional instrument in It−1 in order to identify βL (which
is not identified in the first stage).

• Both ℓit and ℓi(t−1) are good candidates: the choice depends
on the timing assumptions about labor demand.



The modern control function approach (5/5)
• ACF provide some Monte Carlo experiments that show how

under their favorite Leontiev functional form their procedure
delivers consistent estimates, unlike LP’s.

• Symmetrically (and unsurprisingly) LP’s works better in the
ACF experiments under assumptions favorable to it.

• The method by ACF is currently the standard approach
in production function estimation. Occasionally the method
by LP (and to a lesser extent that by OP) is still used.

• Their method, like OP’s and LP’s, can be extended to more
general specifications, like the translog production function.

• In their paper, ACF also make a very important point: their
method is comparable to direct panel data approaches. This
connection is best understood through Wooldridge (2009).



A unified panel data approach (1/5)

Wooldridge (2009) provides a unified framework for OP, LP and
ACF. He considers the following more general model:

yit = α + wT
itβ + xT

itγ + ωit + εit

with:
ωit = f−1 (xit, mit)

and where:
• wit are the variable inputs (e.g. ℓit);
• xit are the state variables (e.g. kit);
• mit are the proxy variables (e.g. iit or mit).

Wooldridge allows f−1 (·) to be time-varying and acknowledges
the functional dependence problem; this does not fundamentally
affect his analysis.



A unified panel data approach (2/5)
Wooldridge poses the following sets of moment conditions:

E
[
εit

∣∣∣ {wi(t−s), xi(t−s), mi(t−s)
}t−1

s=0

]
= 0

for t = 1, . . . , T ; and:

E
[
εit + ξit

∣∣∣xit,
{

wi(t−s), xi(t−s), mi(t−s)
}t−1

s=1

]
= 0

for t = 2, . . . , T and given ξit ≡ ωit − E
[
ωit| ωi(t−1)

]
.

They evidently correspond to the “first stage” and “second stage”
moment conditions by OP and LP, respectively.

Wooldridge claims that these moment conditions jointly identify
both β and γ, even in ACF: “xit, xi(t−1) and mi(t−1) act as their
own instruments, and wi(t−1) acts as an instrument for wit.”



A unified panel data approach (3/5)
Wooldridge illustrates this with polynomial approximations.
He writes c (xit, mit) as a Q-long vector of polynomial functions
of its arguments (which contains xit and mit “separately”), and:

f−1 (xit, mit) = λ0 + [c (xit, mit)]T λ

where cit can be used as shorthand for c (xit, mit). Furthermore,
Wooldridge posits the following.

E
[
ωit| ωi(t−1)

]
= ρ0 + ρ1ωi(t−1) + · · · + ρGωG

i(t−1)

Substituting, the model can be written, for α0 ≡ α + λ0, as:

yit = α0 + wT
itβ + xT

itγ + cT
itλ + εit

and, for η0 ≡ α + ρ0 and υit = εit + ξit, as follows.

yit = η0 + wT
itβ+ xT

itγ+ρ1
(
cT

i(t−1)λ
)

+ · · · +ρG

(
cT

i(t−1)λ
)G

+ υit



A unified panel data approach (4/5)
Wooldridge argues that it is easy to verify that all the parameters
θ = (α0,η0,β,γ,λ, ρ1, . . . , ρG) are identified. Write:

zit ≡
(
1 xT

it wT
i(t−1) cT

i(t−1) qT
i(t−1)

)
where qi(t−1) is a set of at least G non-linear functions of ci(t−1).
Then, the instruments matrix for this system of equations is:

Zit =
(

wT
it cT

it zT
it 0T

0T 0T 0T zT
it

)

for t = 2, . . . , T . The system can be expressed as follows.

rit (θ) =
(

r1it (θ)
r2it (θ)

)

=
(

yit − α0 − wT
itβ − xT

itγ − cT
itλ

yit − η0 − wT
itβ − xT

itγ −
∑G

g=1 ρg

(
cT

i(t−1)λ
)g

)



A unified panel data approach (5/5)
Hence, the moment conditions can be expressed succinctly as:

E
[
ZT

itrit (θ)
]

= 0

for t = 2, . . . , T . As Wooldridge suggests, this enables easy joint
estimation via standard GMM.

Wooldridge further suggests that one particular case is especially
illustrative: when ωit follows a random walk with drift – that is,
G = 1 and ωit = ρ0 + ωi(t−1) + ξit. Thus the system writes as:

rit (θ) =
(

yit

yit

)
−
(

1 0 wit xit cit

0 1 wit xit ci(t−1)

)
α0
η0
β

γ

λ


and estimation is straightforward; also, including qi(t−1) into Zit

is unnecessary but it provides overidentifying restrictions.



Control functions and panel data: a summary
• The approach by Wooldridge dispenses details on structural

assumptions and provides a more transparent econometrics.

• Yet one needs to make sense of the differences between ACF
and LP in light of it. The ACF approach corresponds to:

f−1 (wit, xit, mit) = λ0 + [c (wit, xit, mit)]T λ

which is more general than the one outlined by Wooldridge,
based on LP (and that can be seen as a restriction of ACF,
if functional dependence is not a problem).

• Ultimately however, the identifying moments are similar.

• There are also similarities with the Blundell-Bond approach,
where ωit = ρωi(t−1) + ξit but ft (·) is unrestricted. There,
identification is also based on a similar set of lagged inputs.

• Joint estimation is ideal, but it is still often impractical.



Incorporating demand into the model (1/6)
• Control function approaches enabled substantial progress in

the estimation of production functions. However they ignore
the demand side altogether, which can be problematic.

• This is illustrated in the contribution by De Loecker (2011),
which studies the impact of trade liberalization (the removal
of tariffs and similar barriers) on productivity.

• Traditional approaches to this question typically pose that:

ωit = λ0 + λ1qrit + ζit

where qrit ∈ [0, 1] is a variable that measures the extent to
which firm i’s products are “protected” by quotas that apply
to foreign countries: at the extremes, qrit = 0 if no product
is protected and qrit = 1 if all products are protected.

• Clearly, ζit here is a residual error of the productivity shock.



Incorporating demand into the model (2/6)
• It is hypothesized that λ1 ≤ 0 because of competition, but

to what extent is this empirically true?

• One could estimate λ1 by specifying qrit into the production
function, or by regressing the estimated residual ω̂it on it.

• Both approaches fail even if OP/LP/ACF are used, because
of the confounding effect of demand changes. In fact, trade
liberalization is likely to affect sale prices!

• Recall that researchers estimate production functions using
deflated sales log Rit − log Ps(i)t as their dependent variable,
unless actual physical output Yit is observed (which is rare).

• Naturally, qrit correlates with ϖit = log Pit − log Ps(i)t: that
is, unobserved error in firm i’s own price.

• Thus, näıve estimation of λ1 likely leads to overstate it.



Incorporating demand into the model (3/6)
• The key contribution by De Loecker was to incorporate the

following demand function in the estimation.

Yit = Ys(i)t

(
Pit

Ps(i)t

)σs(i)

exp (ηit)

• Above, Ys(i)t is a demand shifter, ηit is a demand shock
(unobserved), and σs(i) is the demand elasticity.

• This demand function follows directly from CES preferences,
a classical ingredient of many economic models.

• In logarithms (represented by lower-case variables), it reads:

yit = ys(i)t + σs(i)
(
pit − ps(i)t

)
+ ηit

which can also obtain from a random utility model of choice
as in Berry (1994), with a different interpretation for σs(i).



Incorporating demand into the model (4/6)
Substituting the demand function into the LP model with β0 = 0:

r̃it = γKkit + γLℓit + γM mit + γs(i)ys(i)t + ω∗
it + η∗

it + ε∗
it

where:

• r̃it = rit − ps(i)t is the actually used deflated revenue;

• γH =
(
σs(i) + 1
σs(i)

)
βH for H = K, L, M ;

• γs(i) =
1∣∣∣σs(i)

∣∣∣;
• ω∗

it =
(
σs(i) + 1
σs(i)

)
ωit and ε∗

it =
(
σs(i) + 1
σs(i)

)
εit;

• η∗
it =

ηit∣∣∣σs(i)

∣∣∣.



Incorporating demand into the model (5/6)
• De Loecker also specifies, under some assumptions, a version

of this equation for multi-product firms.

• Estimating this equation consistently would allow to recover
both production functions parameters and σs(i): the demand
elasticity. This entails tackling the endogenous ω∗

it and η∗
it.

• De Loecker specifies η∗
it as:

η∗
it = dT

itδ + τqrit + η̃it

where dit is a vector of product dummies (to account for
firm i’s products), τ is a parameter that introduces a demand
channel for quotas, and η̃it is a residual orthogonal shock.

• Instead, De Loecker specifies ω∗
it as in LP, but with a twist:

the law of motion of productivity is affected by trade quotas.

ωit = gt

(
ωi(t−1), qrit

)
+ ξit



Incorporating demand into the model (6/6)
De Loecker’s final model is thus as follows, for ε∗∗

it = ε∗
it + η̃it.

r̃it = γKkit +γLℓit +γM mit +γs(i)ys(i)t + dT
itδ+ τqrit + ω∗

it + ε∗∗
it

In performing estimation, De Loecker attempts all of OP, LP and
ACF to tackle ω∗

it (although γM is dubiously always estimated).
De Loecker then estimates productivity-per-input ωit as:

ω̂it =
(
r̃it − γ̂Kkit − γ̂Lℓit − γ̂M mit − γ̂s(i)ys(i)t − τ̂qrit

)( σ̂s(i)

σ̂s(i) + 1

)
and regresses this measure on qrit in order to estimate λ1.

In summary, his results are as follows:

• (βK ,βL,βM ) are estimated similarly as in OLS, and OP/LP;

• the resulting estimate of λ1 is hardly significant (both in the
statistical and economic sense).



A modern non-parametric treatment (1/9)
• A recent contribution by Gandhi, Navarro and Rivers (2020,

GNR) revisits the econometrics of production functions from
a fully non-parametric perspective.

• Their starting observation is that the literature culminating
with ACF provides what is essentially a negative result about
the identification of gross output production functions, with
more positive prospects reserved to models for value added.

• Yet interest typically falls on gross output, not value added.
The starting point of GNR is a model for gross output yit:

yit = log F (kit, ℓit, mit) + ωit + εit

where F (·) is flexibly treated non-parametrically.

• GNR develop a method for the non-parametric identification
of F (·) using information about input prices.



A modern non-parametric treatment (2/9)
• GNR first revisit the functional dependence problem. Their

Theorem 1 proves that under Assumptions 1-3 by ACF and
if firms take all prices as given, function F (·) is not identified
separately from g (·): the law of motion of ωit.

• Their main result (Theorem 2) proves that also allowing for
Assumptions 4-5 by ACF, the elasticity of F (·) to a given
input is identified off variation in input prices. This result
exploits the First Order Conditions, and echoes traditional
literature (most notably Griliches and Ringstad, 1971).

• Write the First Order Condition for mit as:

P M
t = Pit

∂F (kit, ℓit, mit)
∂ exp (mit)

exp (ωit) E

where P M
t is the price of materials whereas E ≡ E [exp (εit)].

Unlike in ACF, firms “expect” εit, but with uncertainty.



A modern non-parametric treatment (3/9)
By taking the logarithm of the First Order Conditions:

log P M
t = log Pit − log Mit + log

[
∂F (kit, ℓit, mit)

∂mit

]
+ ωit + log E

and substituting ωit = log Yit − log F (kit, ℓit, mit) − εit, one gets:

zM
it = log DE (kit, ℓit, mit) − εit

where:
zM

it ≡ log
(
P M

t Mit

)
− log (PitYit)

is the logarithmic share of the cost of materials on total revenue
(typically observed in the data) and DE (kit, ℓit, mit) is as follows.

DE (kit, ℓit, mit) ≡ E
[

∂ log F (kit, ℓit, mit)
∂mit

]
= E

[ 1
F (kit, ℓit, mit)

∂F (kit, ℓit, mit)
∂mit

]



A modern non-parametric treatment (4/9)
Theorem 2 by GNR proceeds as follows. Starting from equation

zM
it = log DE (kit, ℓit, mit) − εit

they observe that function DE (kit, ℓit, mit) is non-parametrically
identified since the transitory shock is exogenous.

E [εit| kit, ℓit, mit] = 0

In addition, the constant term

E = E
[
exp

(
log DE (kit, ℓit, mit) − zM

it

)]
is also obviously identified. Therefore, the elasticity of interest is
identified residually.

∂ log F (kit, ℓit, mit)
∂mit

= DE (kit, ℓit, mit)
E

For example, in the Cobb-Douglas case DE (kit, ℓit, mit) /E = βM .



A modern non-parametric treatment (5/9)
The last important result by GNR (Theorem 3) is that the whole
production function F (·) is non-parametrically identified. Write:

D (kit, ℓit, mit) ≡
ˆ
R

∂ log F (kit, ℓit, mit)
∂mit

dmit

= log F (kit, ℓit, mit) + C (kit, ℓit)

by the Fundamental Theorem of Calculus (notice that knowledge
of C (kit, ℓit) identifies the production function). Also define:

Yit ≡ yit − εit − D (kit, ℓit, mit) = −C (kit, ℓit) + ωit

where Yit is a random variable that can be “recovered” from the
data. The final step exploits ωit = g

(
ωi(t−1)

)
+ ξit:

Yit = −C (kit, ℓit) + g
(
Yi(t−1) + C

(
ki(t−1), ℓi(t−1)

))
+ ξit

hence C (kit, ℓit) is non-parametrically identified if E [ξit| It] = 0,
similarly to both Blundell-Bond and OP/LP/ACF.



A modern non-parametric treatment (6/9)
Practical implementation of such a non-parametric identification
result requires a two-step estimation procedure.

The first step seeks those coefficients γ = {γrk,rℓ,rm}rk+rℓ+rm≤R
that solve (via NLLS):

min
γ

N∑
i=1

T∑
t=1

zit − log

R−rℓ−rm∑
rk=1

R−rm∑
rℓ=1

R∑
rm=1

γrk,rℓ,rmkrk
it ℓrℓ

it mrm
it

2

that is, the parameter estimates of an approximating polynomial
of degree R for DE (kit, ℓit, mit). This writes as follows.

D̂E (kit, ℓit, mit) =
R−rℓ−rm∑

rk=1

R−rm∑
rℓ=1

R∑
rm=1

γ̂rk,rℓ,rmkrk
it ℓrℓ

it mrm
it

Notice that this is enough to identify the elasticities of interests,
since E is easily estimated as the empirical average of exp (ε̂it),
where ε̂it are the residuals of the least squares problem.



A modern non-parametric treatment (7/9)
Given an estimate Ê for E , one can calculate:

D̂ (kit, ℓit, mit) =
(
Ê
)−1 R−rℓ−rm∑

rk=1

R−rm∑
rℓ=1

R∑
rm=1

γ̂rk,rℓ,rm

rm + 1 krk
it ℓrℓ

it mrm+1
it

as well as Ŷit = yit − ε̂it − D̂ (kit, ℓit, mit).

The second stage is based on more polynomial approximations:

C (kit, ℓit) =
S−sℓ∑
sk=1

S∑
sℓ=1

δsk,sℓ
ksk

it ℓsℓ
it

and:

g
(
ωi(t−1)

)
=

A∑
a=1

αaωa
i(t−1)

for some degrees S and A.



A modern non-parametric treatment (8/9)
This yields an equation estimable via NLLS, very much like the
OP/LP/ACF second stage.

Ŷit = −
S−sℓ∑
sk=1

S∑
sℓ=1

δsk,sℓ
ksk

it ℓsℓ
it +

+
A∑

a=1
αa

Ŷi(t−1) +
S−sℓ∑
sk=1

S∑
sℓ=1

δsk,sℓ
ksk

i(t−1)ℓ
sℓ

i(t−1)

a

+ ξit

The non-parametric estimate of F (·) is thus recovered as follows.

log F̂ (kit, ℓit, mit) = D̂ (kit, ℓit, mit) − Ĉ (kit, ℓit) =

=
(
Ê
)−1 R−rℓ−rm∑

rk=1

R−rm∑
rℓ=1

R∑
rm=1

γ̂rk,rℓ,rm

rm + 1 krk
it ℓrℓ

it mrm+1
it −

−
S−sℓ∑
sk=1

S∑
sℓ=1

δ̂sk,sℓ
ksk

it ℓsℓ
it



A modern non-parametric treatment (9/9)
• GNR rely upon recent non-parametric econometric literature

(Hahn, Liao and Ridder, 2018) for the asymptotic properties
of their estimator. They bootstrap the standard errors of key
functionals, such as the elasticities.

• In Monte Carlo simulations with R = S = 2 and A = 3, they
show that their method retrieves input elasticities quite well
for Cobb-Douglas, translog and CES production functions.

• In an application on Colombian and Chilean data, GNR find
that their method yields estimates that differ markedly from
those by OLS, and they find their own more realistic.

• GNR acknowledge that conceptually, their method is not too
different from panel data and control function methods. Yet
their contribution is important as it highlights the role of zit.
Their approach is likely to replace ACF as the standard.


