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Measuring strategic interactions
• Many economic settings feature strategic interactions. It

is interesting to quantify the extent of these interactions.

• In economics, strategic interactions are modeled as games.

• A prime example are models of competition between firms:
both on the intensive margin (e.g. strategic price or quantity
setting) and the extensive margin (e.g. entry in markets).

• How to estimate the parameters that govern these games?
In Industrial Organization, this question has been posed and
addressed primarily in the setting of entry games.

• This lecture reviews some key contributions on entry games,
and highlights some methodological takeaways that can
be generalized to other settings.



An overview of static games

Most of this lecture covers static entry games; dynamic ones are
reviewed less extensively. The ensuing treatment of static games
is structured as follows.

1. It sets foot with a classic: the model by Bresnahan and Reiss
(1991) to study entry and competition in local markets.

2. It proceeds with another classic: Berry’s (1992) entry model,
which uses simulations to allow for firm heterogeneity.

3. It then addresses the issue of equilibrium multiplicity by
overviewing the approach by Ciliberto and Tamer (2009), as
well as the concept of partial identification they leverage.

4. Lastly, it summarizes the incomplete information static
model of spatial competition by Seim (2006).



A seminal entry model (1/6)
The framework by Bresnahan and Reiss (1991) examines entry
decisions in local markets in order to understand the structure of
competition as a function of the number of equilibrium firms.

This seminal entry model displays features that partially overlap
with those typical of demand estimation models (Lecture 14):

• estimation based on “aggregate” market-level data where
econometricians observe the number Ni of firms selling some
homogeneous good or service, and other local characteristics
(but no prices, market shares, costs or margins);

• a latent variable specification that is derived from economic
theory, and incorporates both demand and supply;

• the consequent specification of a multinomial model: in this
particular case, an ordered probit.



A seminal entry model (2/6)
The demand function in market i is given by:

Qi = D (Pi;yi, zi) = d (Pi; zi)S (yi)

where Qi and Pi are clearly quantity and price, and:
• d (Pi; zi) is the demand of a representative consumer;
• S (yi) is the number of consumers;
• yi and zi are demographic variables that affect demand.

On the supply side, firms have:
• fixed costs F (wi) +B;
• marginal costs MC (q,wi);
• average variable costs AV C (q,wi);

given a per-firm quantity q and local cost shifters wi.



A seminal entry model (3/6)
The econometric model makes conclusions about competition by
studying the relationship between the number of firms Ni and
market “size” Si.

To understand the underlying economic intuition, write a firm’s
average profits as:

Πi = [PNi −AV C (qNi ,wi)] d (PNi ; zi)
S (yi)
Ni

− F (wi) −BNi

where some variables are indexed by Ni to highlight that these
are affected by the structure of competition or successive entry.
Then, define firms’ entry threshold as:

sNi ≡ SNi (yi)
Ni

= F (wi) +BNi

[PNi −AV C (qNi ,wi)] d (PNi ; zi)

that is, the market share that firms need to at least break even
for given Ni (Πi = 0). This function is increasing in Ni.



A seminal entry model (4/6)
To enable econometric estimation, a parameterized expression
for profits is necessary. For xi = (wi, zi):

Πi = S (yi;λ)VNi (wi, zi;α,β) − FNi (wi;γ,δ) + εi

where εi ∼ N (0, 1) and is independent across observations, and:

• the market size is specified as follows:

S (yi;λ) = yT
i λ

• firms’ variable profits (for S = 1) are specified as follows:

VNi (xi;α,β) = α1 −
Ni∑

n=2
αn + xT

i β

• and firms’ fixed costs are specified as follows.

FNi (wi;γ,δ) = γ1 +
Ni∑

n=2
γn +wT

i δ



A seminal entry model (5/6)
• This yields in an estimable ordered probit where Ni is the

outcome variable and Πi is the latent variable.

• The ordered probit thresholds are the γ parameters; there
are also “extra” thresholds α that interact with yi. These
parameters are meant to capture the effect of competition.

• To ensure identification, Bresnahan and Reiss normalize one
element of λ (the parameter for total population) to one.

• The entry thresholds can be obtained from the estimates.

ŜN = γ̂1 −
∑Ni

n=2 γ̂n + w̄Tδ̂

α̂1 −
∑Ni

n=2 α̂n + x̄Tβ̂

• These are obtained from sample averages w̄ and x̄, and allow
to calculate ŝN = ŜN/N for any integer N .



A seminal entry model (6/6)
• Bresnahan and Reiss estimate their model in several markets

for local services: doctors, dentists, druggists (pharmacists),
plumbers, tire dealers.

• They focus on several isolated towns. Note: heterogeneity
between different doctors, dentists etc. is incorporated in εi.

• The results are meaningful: the econometric “thresholds” αn

and γn are hardly significant for n = 3, 4, 5, . . .

• Suggestively, these markets approach perfect competition
quite quickly as the number of oligopolists becomes modest.

• This is confirmed by the analysis and statistical tests about
the ratios ŝN/ŝM for M < N (especially M = 1).

• This is a striking confirmation of oligopoly theory!



Simulating entry (1/6)
An early noteworthy extension of the Bresnahan-Reiss model was
developed by Berry (1992). His central contribution was a richer
treatment of firm heterogeneity via simulations.

His starting point was the following expression for the profits of
firm f in market i:

Πif = wT
ifα + xT

i β + h (Ni;δ) + ρεi0 + σεif

where:

• wif are firm-level characteristics, possibly market-specific;

• xi are market-level characteristics;

• h (Ni;δ) is a function decreasing in Ni (number of firms);

• εi0 and εif are two error terms (one market-specific and one
firm-specific); both follow the standard normal.



Simulating entry (2/6)
Suppose that there are Fi firms that could potentially operate in
market i. Under this representation of profits, a Nash equilibrium
treatment of the entry game has Ni endogenously determined as:

Ni = max
0≤n≤Fi

{
n : xT

i β + h (n;δ) + ρεi0 + ζin ≥ 0
}

where ζin is the n-th element of the order sequence:

ζi1 > ζi2 > . . . > ζiFi

with ζif ≡ wT
ifα+σεif being the firm-specific profits component.

Note that:

• the equilibrium value ofNi is unique if the errors are known;

• but computing the conditional probability P (Ni| zif ,xi)
can be exceedingly difficult, hampering any MLE approaches
to estimation of the parameters.



Simulating entry (3/6)
As an example, consider the case where Fi = 2, α = 0 and σ = 1.
Also, denote the “total attractiveness” of market i by:

Vi (Ni;xi) ≡ xT
i β + h (Ni;δ) + ρεi0

which is also decreasing in Ni. Then:

P (Ni = 0|xi) =
ˆ −Vi(1;xi)

−∞

ˆ −Vi(1;xi)

−∞
ϕ (εi1)ϕ (εi2) dεi1dεi2

where ϕ (·) is the standard normal’s density. A similar expression
can be derived for P (Ni = 2|xi). But, for εi = (εi1, εi2):

P (Ni = 1|xi) = P (εi ∈ S12) + P (εi ∈ S21) − P (εi ∈ (S12 ∩ S21))

where Skℓ is defined as follows, for k, ℓ = 1, 2.

Skℓ ≡ {εi : εik ≥ −Vi (1;xi) and εiℓ < −Vi (2;xi)}



Simulating entry (4/6)
Some observations are in order.

• This issue stems from the underlying multiple equilibria
(which firms enter and which don’t for every Ni).

• For higher values of Fi, the computational burden obviously
grows exponentially.

• If σ = 0 (quite a restriction) the only error term is εi0, and
the ordered probit à la Bresnahan and Reiss can be adopted
for a given ranking of the (observed) firm characteristics ζif .

• If h (Ni;δ) = 0 and ρ = 0, the model would yield a simple
firm-level probit about entering each market i, or not.

Being interested in a more general solution, Bresnahan proposed
an approach based on the Method of Simulated Moments.



Simulating entry (5/6)
The MSM approach proceeds as follows. For a set of S simulated
draws {uis}S

s=1 from a multivariate standard normal distribution
of dimension Fi + 1, calculate the unbiased simulator:

N̂i (wif ,xi;θ) = 1
S

S∑
s=1

max
0≤n≤Fi

n :
Fi∑

k=1
1
[
Π̂iks (n,uis) ≥ 0

]
≥ n


where θ = (α,β,δ, ρ,σ), and, given uis = (uis0, uis1, . . . , uisFi):

Π̂iks (n,uis) = wT
ifα + xT

i β + h (n;δ) + ρuis0 + σuisf

for f = 1, . . . , Fi. In words, N̂i (zif ,xi;θ) expresses the average
number of successful entrants in the simulation.

Thus, the simulated moments to feed into the MSM approach are
obtained as follows, given a market-level instrument vector zi.

E
[
Ni − N̂i (wif ,xi;θ)

∣∣∣ zi

]
= 0.



Simulating entry (6/6)
• In his application, Berry studies entry in airline routes: his

definition of a market is a pair of airports (1219 in total).

• He uses an instrument vector zi of dimension 24, which leads
to overidentification, that is allegedly based on “functions of
the exogenous data [variables].” However, the discussion on
this point is rather nontransparent by modern standards.

• He specifies h (Ni;δ) = −δ log (Ni) and sets σ =
√

1 − ρ2: a
normalization of the variance of the grand error term.

• The results from a less parametric treatment of h (Ni;δ) are
allegedly similar (they are not reported in the paper).

• Berry makes a case for his MSM approach not so much based
on the statistical properties of the model, but on the realism
of its counterfactual predictions.



Game outcomes versus game equilibria
• In both papers reviewed thus far, the dependent variable is
Ni: the number of entrants in a market. This is an outcome
of the game that can arise from distinct equilibria.

• Can we learn anything from specifying an econometric model
for equilibrium selection? Potentially, this can reveal the
strength of the strategic dependence between players.

• The key problem is equilibrium multiplicity, which poses
fundamental identification challenges.

• The “compromising” solution suggested and adopted in the
literature is the partial/set identification approach.

• The next discussion: 1. first, outlines the problem; 2. then,
summarizes the partial identification framework; 3. finally,
reviews its application by Ciliberto and Tamer (2009).



Multiple equilibria (1/4)

To illustrate the problem, consider a simplified entry model with
two potential entrants per market (Fi = 2) and per-firm profits:

Πfi = xT
fiβf + δfY(3−f)i + εfi

for f = 1, 2. Here, Yif ∈ {0, 1} equals 1 if firm f enters market i,
and 0 otherwise, whereas xfi is a a vector of firm characteristics.
Note that the βf and δf parameters vary by firm.

Firm entry is determined by two simultaneous decisions:

Y1i = 1
[
xT

fiβ1 + δ1Y2i + ε1i ≥ 0
]

Y2i = 1
[
xT

fiβ2 + δ2Y1i + ε2i ≥ 0
]

which are obviously strategically dependent. Assume δf ≤ 0
for f = 1, 2 because of competition.



Multiple equilibria (2/4)
The reduced form representation of the model has the outcome
vector (Y1i, Y2i) expressed as a function of exogenous observable
and unobservable variables.

Adopt pure strategy Nash equilibrium as the solution concept.
This yields the following reduced form.

{
xT

1iβ1 + ε1i < 0
}

∧
{
xT

2iβ2 + ε2i < 0
}

⇒
(
Y1i

Y2i

)
=
(

0
0

)
{
xT

1iβ1 + δ1 + ε1i < 0
}

∧
{
xT

2iβ2 + ε2i ≥ 0
}

⇒
(
Y1i

Y2i

)
=
(

0
1

)
{
xT

1iβ1 + ε1i ≥ 0
}

∧
{
xT

2iβ2 + δ2 + ε2i < 0
}

⇒
(
Y1i

Y2i

)
=
(

1
0

)
{
xT

1iβ1 + δ1 + ε1i ≥ 0
}

∧
{
xT

2iβ2 + δ2 + ε2i ≥ 0
}

⇒
(
Y1i

Y2i

)
=
(

1
1

)



Multiple equilibria (3/4)
Note that for the combinations of exogenous variables satisfying:{

0 ≤ xT
1iβ1 + ε1i < −δ2

}
∧
{

0 ≤ xT
2iβ2 + ε2i < −δ1

}
there are two equilibria, i.e. (0, 1) and (1, 0). This is represented
as the shaded region of the (ε1i, ε2i) plane below.

(0,1) ∨ (1,0)

(0,0)

(0,1)

(1,0)

(1,1)

ε1i

ε2i

(
−xT

1iβ1, −xT
2iβ2
)

(
−xT

1iβ1 − δ1, −xT
2iβ2 − δ2

)



Multiple equilibria (4/4)
• This posits an obvious identification problem: the model

cannot predict the endogenous outcomes for certain values of
the error terms, conditional on the exogenous variables.

• This prevents the construction of unambiguous conditional
probabilities for each equilibrium that would be functions
of the parameters, given the observed data.

• Hence, MLE (but also GMM, SML, MSM) approaches are
inapplicable.

• The problem becomes obviously worse with more players Fi.
Similar issues occur if δf ≥ 0 (due to complementarities).

• If one is willing to work with the notion of identified set:
all parameters that are equally capable to best explain the
outcomes given some criterion, a partial solution is available.



Set identification in a nutshell (1/6)
It is helpful to develop a summary of set identification and of its
associated estimation framework. This discussion draws liberally
from Chernozhukov, Hong and Tamer (2007; CHT).

Recall some ideas on M-Estimation (Lecture 11): given some i.i.d.
random vectors xi and a criterion function Q0 (θ) = E [q (xi;θ)],
the true parameter vector θ0 is point identified if −Q0 (θ) has a
unique minimizer. This criterion is typically informed by a set of
moment equalities of the kind E [g (xi;θ0)] = 0 with a unique
solution θ0 (even in say the MLE case).

But what if assumptions lead to moment inequalities, like:

E [g (xi;θ0)] ≤ 0

or even with reverse sign? The set ΘI = {θ0 : E [g (xi;θ0)] ≤ 0}
is very likely multivalued, i.e. |Θ0| ≥ 1.



Set identification in a nutshell (2/6)
Here are two examples of moment inequalities (from CHT).

1. Missing data: suppose one aims to estimate θ = E [Yi] but
the variable Yi is missing: one only observes some “brackets”
Y i and Y i such that Yi ∈ [Y i, Y i]. Then, E[Y i] ≤ θ ≤ E[Y i].

g
(
Y i, Y i; θ

)
=
(
Y i − θ

θ − Y i

)

2. Regression for missing outcomes: now let Yi be missing
as above, and E [Yi|xi] = xT

i β. Hence, for a given zi ∈ RK :

E
[
ziY i

]
≤ E

[
zix

T
i

]
β ≤ E

[
ziY i

]
with moment functions adapted to “instruments” zi.

g
(
Y i, Y i,xi, zi;β

)
=

+zi

(
Y i − xT

i β
)

−zi

(
Y i − xT

i β
)



Set identification in a nutshell (3/6)
Let ∥x∥+ = ∥max (0, x)∥ and ∥x∥− = ∥min (0, x)∥. Also let:

Q0 (θ) ≡
∥∥∥∥(E [g (xi;θ)])T A

1
2
0

∥∥∥∥2

+

where A0 is a diagonal matrix with a strictly positive diagonal.
Then, the identified set ΘI in this framework is appropriately
defined as the (likely multivalued) set of solutions of Q0 (θ).

ΘI = {θ0 : Q0 (θ0) = 0}

Let Q̂N (θ) be the sample analog of Q0 (θ), for some AN
p→ A0.

Q̂N (θ) ≡

∥∥∥∥∥∥
(

1
N

N∑
i=1
g (xi;θ)

)T

A
1
2
N

∥∥∥∥∥∥
2

+

The objective is to leverage function Q̂N (θ) to construct suitable
set estimates Θ̂SE of the identified set ΘI .



Set identification in a nutshell (4/6)

CHT define the set estimator as the set Θ̂SE (cN ) which, note,
is a function of some sequence cN , as follows:

Θ̂SE (cN ) =
{
θ : Q̂N (θ) ≤ cN

}
that is, the set of θ values that solve the inequality Q̂N (θ) ≤ cN

for a given value of N .

• Given the definition of the identified set ΘI , this is a fairly
intuitive application of the analogy principle.

• Buy why not, even more intuitively, cN = 0 uniformly? CHT
allow for this, e.g. in the two previous examples.

• However, for reasons elaborated soon, a less restrictive cN is
more appropriate under the asymptotics developed in CHT.



Set identification in a nutshell (5/6)
Consider the mathematical notion of Hausdorff distance between
two sets X and Y, denoted as dH (X,Y):

dH (X,Y) = max
{

sup
x∈X

d (x,Y) , sup
y∈Y

d (X, y)
}

where d (·, ·) is a more “conventional” (e.g. Euclidean) distance.
Intuitively, dH (X,Y) is the largest distance between X and Y.

CHT provide conditions under which Θ̂SE (cN ) is consistent in
the following sense.

dH

(
Θ̂SE (cN ) ,ΘI

)
p→ 0

• The most important condition is that ΘI is compact.

• CHT show that if cN = (logN) /N , the speed of convergence
is close to the conventional

√
N rate.



Set identification in a nutshell (6/6)
How to conduct inference on Θ̂SE (cN )? For point estimators,
inference usually leads to confidence intervals/sets, but Θ̂SE (cN )
is already a set.

One possibility is to construct Θ̂SE (cN ) directly as a confidence
region that covers ΘI with probability equal to some confidence
level α ∈ (0, 1), by choosing cN appropriately.

P
(
ΘI ⊆ Θ̂SE (cN )

)
= α

How to do this in practice?

• CHT propose a subsampling algorithm akin to a bootstrap:
after initializing c0 = infθ∈Θ Q̂N (θ), the proper cN obtains
as the α-quantile of supΘ̂SE(c0) Q̂N (θ) over the subsamples.

• The algorithm is predicated on conditions specified by CHT.
In some particular cases it simplifies to a modified bootstrap.



Set identification for entry games (1/7)
Ciliberto and Tamer (2009) provide a famous application of set
identification to the problem of multiple equilibria in entry games.

The key idea is to acknowledge that each parameter set does not
identify unique probabilities for each game outcome to occur, but
these probabilities can be bounded and treated as inequalities.

Consider for example the outcome (Y1i, Y2i) = (1, 0) in the entry
game with two potential entrants. Given values of θf = (βf , δf )
for f = 1, 2 and θ = (θ1,θ2), the conditional probability that
this outcome occurs is bounded as follows:

P ((ε1i, ε2i) ∈ S1|x1i,x2i;θ) ≤ P ((1, 0)|x1i,x2i;θ)
≤ P ((ε1i, ε2i) ∈ S1|x1i,x2i;θ)

+ P ((ε1i, ε2i) ∈ S2|x1i,x2i;θ)

where S1 and S2 are two subsets of R2.



Set identification for entry games (2/7)
In this example, S1 is the dark gray area in the figure, while S2
is the light gray area.

(0,1) ∨ (1,0)

(1,0)

ε1i

ε2i

(
−xT

1iβ1, −xT
1iβ2
)

(
−xT

2iβ1 − δ1, −xT
2iβ2 − δ2

)

A symmetric analysis applies to the outcome (Y1i, Y2i) = (0, 1).
The logic can be extended to fairly low values of Fi > 2. However,
for moderate-to-high values of Fi, enumerating the equilibria and
finding the multiplicity regions becomes too cumbersome.



Set identification for entry games (3/7)
Write xi = (x1i, . . . ,xF i) as the collection of all the firm variables
in market i and εi = (ε1i, . . . , εF i) as the collection of all the error
terms. Similarly, θ = (θ1, . . . ,θF ) collects all the parameters.

For a generic F (assumed equal across all markets i) the moment
inequalities that are associated with the 2F possible equilibria
of the game of the kind yi ∈ {0, 1}F can be expressed as follows. b1 (xi;θ)

...
b2F (xi;θ)


︸ ︷︷ ︸

≡b(xi;θ)

≤

 P (y1i|xi;θ)
...

P (y2F i|xi;θ)


︸ ︷︷ ︸

≡p(xi;θ)

≤

 b1 (xi;θ)
...

b2F (xi;θ)


︸ ︷︷ ︸

≡b(xi;θ)

The functions b (xi;θ) and b (xi;θ) characterize the bounds on
the “true” conditional probabilities p (xi;θ) of the 2F equilibria.
In general, these bounds are difficult to derive analytically.



Set identification for entry games (4/7)
Let εi be independent of xi and drawn from a distribution H (εi)
whose parameters, if there are any, are appended to θ. Let G (xi)
be the distribution that generates xi, which has support X. Then:

Q0 (θ) =
ˆ
X

[
∥p (xi;θ) − b (xi;θ)∥−+

+ ∥p (xi;θ) − b (xi;θ)∥+
]
dG (xi)

gives the objective function associated with this set identification
problem. Here, ∥·∥+ and ∥·∥− are taken pointwise over vectors.

• The objective is to estimate ΘI = {θ0 : Q0 (θ0) = 0}. Thus,
Ciliberto and Tamer resort to the methodology by CHT.

• Ciliberto and Tamer show that identification is improved if
xi includes variables that are unique to each firm (“exclusion
restrictions”) as in classical SEMs (Lecture 9).



Set identification for entry games (5/7)
To be implemented in practice, this approach requires knowledge
of b (xi;θ), b (xi;θ) as well as p (xi;θ). To overcome this issue,
Ciliberto and Tamer propose the following simulation approach.

• Draw S vectors us = {u1is, . . . , uF is}M
i=1 from H (εi), where

M is the number of markets, for s = 1, . . . , S.

• For all potential equilibria yℓi with ℓ = 1, . . . , 2F , calculate
profits πℓfis (yℓi,xi,uis;θ) for every firm f = 1, . . . , F and
market i = 1, . . . ,M , given a draw uis = (u1is, . . . , uF is).

• For every s, calculate the vector iis (xi,uis;θ) that expresses
whether any outcome yℓi in market i is an equilibrium.

iis (xi,uis;θ) =


∏F

f=1 1 [π1fis (y1i,xi,uis;θ) ≥ 0]
...∏F

f=1 1
[
π2F fis (y2F i,xi,uis;θ) ≥ 0

]




Set identification for entry games (6/7)
• Additionally, calculate the vector imis (xi,uis;θ) that denotes

whether any outcome yℓi is a unique equilibrium.

i∗is (xi,uis;θ) = iis (xi,uis;θ) · 1
[
ιTiis (xi,uis;θ) = 1

]
• Both vectors are binary: their entries are either 0 or 1.

• The bounds are then simulated as follows, given xi and θ.

b̂ (xi;θ) = 1
S

S∑
s=1

i∗is (xi,uis;θ)

b̂ (xi;θ) = 1
S

S∑
s=1

iis (xi,uis;θ)

• These simulators are consistent if S grows alongside M .

• More simply, p̂ (xi;θ) can be estimated nonparametrically.



Set identification for entry games (7/7)
• Using their framework, Ciliberto and Tamer revisit Berry’s

airline entry problem. They study M = 2472 airport pairs.

• They focus on F = 4 firms: American Airlines, Delta, United
Airlines, and Southwest. Others are treated as nonstrategic.

• The xi controls vary at the market, airline, or market-airline
level. If continuous, they are discretized to obtain p̂ (xi;θ).

• Their baseline estimates of δf are similar across firms. More
nuanced specifications where δff ′ varies at the firm pair level
suggests that Southwest is more susceptible to competition.

• They also study specifications of profits where yi and key xi

variables interact. The resulting estimates suggest that the
higher a firm’s presence at a given airport, the stronger the
negative competitive effect on other firms for that airport.



A game of incomplete information (1/7)
• The last paper covered in this Lecture’s review (Seim, 2006),

is notable in a number of ways.

• First and foremost, it introduces incomplete information
in the entry game. This makes the game more realistic, but
also somewhat counterintuitively easier to estimate.

• This paper introduces a spatial dimension of competition,
which is applied to a very local (though nowadays obsolete)
“urban” market: that of videotape rental stores.

• In the model, not only is entry endogenous, but the location
of a store within a city also is. This introduces endogenous
product differentiation into an entry model.

• These elements are held together via an elegant, fairly simple
estimation framework.



A game of incomplete information (2/7)
Seim assumes a profit function for firms that also varies along Li

possible locations within market i, indexed as ℓ = 1, . . . , Li.

Πiℓf = xT
iℓβ +

B∑
b=0

γbNiℓb + ξi + εℓf

In this expression:
• the regressors xiℓ can vary at the market-location level, with
Xi = (xi1, . . . ,xiLi) collecting all covariates of market i;

• the error term is split between a market-level component
ξi and a shock εℓf that is location-firm specific;

• spatial competition is introduced via a linear expression that
depends on Niℓb, the total number of firms that are located
at distance band b relative to location ℓ in market i;

• distance bands are discrete and indexed as b = 0, 1, . . . , B.



A game of incomplete information (3/7)
An example from Seim herself helps clarify the setup. Here, the
market i features Li = 9 locations arranged in a square; if a firm
locates in cell 7, its immediate competitors lie in cells 4, 5 and 8,
while the farther competitors are in cells 1, 2, 3, 6 and 9.

1 2 3

4 5 6

7 8 9

b = 0 b = 1 b = 2



A game of incomplete information (4/7)
Crucially, Seim assumes incomplete information with regard
to the shocks εℓf of potential competitors. Yet firms form beliefs
about the probability of competitors’ choices. Write:

piℓg ≡ Pr
(
ℓ ∈ arg max

l=1,...,Li

E [Πilg]
∣∣∣∣Xi, ξi, Ei

)
as the probability that firm g (a potential competitor of f) settles
in location ℓ = 1, . . . , Li. This expression is conditional on the
number of entrants Ei in market i, which for the moment shall
be taken as given (to be later endogenized).

Obviously, E [Πilg], that is, the expected profits of firm g in every
location l, depend in turn on the choices of all other firms.

This problem is recursive, but thanks to incomplete information,
each firm f treats the entry probabilities of other firms g in every
location as symmetric.



A game of incomplete information (5/7)
Let pig = (pi1g, . . . , piLig). By a symmetry conjecture (which
is verified in equilibrium) it is pig = pif = p∗ for any two firms
f and g. Hence, the expected profits of firm f in location ℓ are:

E [Πiℓf ] = xT
iℓβ + γ0 + (Ei − 1)

B∑
b=1

γb

∑
l ̸=ℓ

p∗
il1 [B (ℓ, l) = b]

︸ ︷︷ ︸
≡ Π ∗

iℓ (xiℓ,p∗;θ)

+ ξi

where B (ℓ, l) identifies the “distance band” between ℓ and l, and
θ = (β;γ0,γ1, . . . ,γB) collects all the model’s parameters. Here,
γ0 captures the fact that firm f locates in ℓ (e.g. “cell 7”).

If the shocks εfℓ are i.i.d. standard Gumbel, all the Li elements
of the p∗ vector have the familiar multinomial logit form.

p∗
iℓ = exp (Π ∗

iℓ (xiℓ,p∗;θ))∑Li
m=1 exp (Π ∗

im (xim,p∗;θ))



A game of incomplete information (6/7)
It remains to endogenize entry. One can derive Pi = P (Xi, ξi;θ),
that is, the conditional probability of entering market i, as a logit
probability based on the normalized expected maximum payoff.

Pi = exp (ξi)
∑Li

ℓ=1 exp (Π ∗
iℓ (xiℓ,p∗;θ))

1 + exp (ξi)
∑Li

ℓ=1 exp
(
Π ∗

iℓ (xiℓ,p∗;θ)
)

Hence, Ei = FiPi; where Fi is, as in previous use of notation in
this lecture, the total number of potential entrants.

By an inversion argument similar to the one by Berry (1994) for
demand estimation (Lecture 14), one can solve for ξi.

ξi = log (Ei) − log (Fi − Ei) − log

 Li∑
ℓ=1

exp (Π ∗
iℓ (xiℓ,p∗;θ))


Seim leverages this expression in estimation, replacing Ei by the
actually observed number of entrants in each market i: ei.



A game of incomplete information (7/7)
To close the model, let ξi ∼ N

(
µ,σ2). This allows to specify the

following likelihood function computed over all M markets:

L
(
θ,µ,σ2

)
=

M∏
i=1

fdi
(di| Xi, ei, ξi;θ) 1

σ
ϕ

(
ξi − µ

σ

∣∣∣∣Xi, ei;µ,σ2
)

where ϕ (·) is the standard normal p.d.f., di is the random vector
of length Fi (with realization di) that denotes the choices of all
firms about market i (entry – and in what location – or not) and
fdi

( ·| ·) is the conditional density of di induced by the model.

• Maximization of this likelihood function nests a fixed-point
algorithm to solve for p∗ at every iteration.

• Seim estimates the model on 151 cities (markets), splitting
all of them into proper locations or “cells.” The results show
decaying γb coefficients and are robust to the choice of Fi.



A brief introduction to dynamic games
• Econometric models for static games reviewed thus far come

with a major limitation: the observed outcomes are taken at
their face value, ignoring the history that led to them.

• Relevant economic choices are strategic and forward-looking,
dynamic: think of firms that invest, or enter markets.

• This led to developing the econometrics of dynamic games,
bridging the Bresnahan-Reiss-Berry tradition with dynamic
frameworks à la Rust (1987) and Hotz and Miller (1993).

• There is no way to make justice of this large literature within
this self-contained, very introductory discussion.

• Therefore, this introduction must inevitably be selective; see
Aguirregabiria, Collard-Wexler and Ryan (2021) for a recent,
comprehensive survey.



Markov Perfect Nash Equilibrium (1/7)
Econometric models for dynamic games rely on the game solution
concept called Markov Perfect Nash Equilibrium (in short,
MPNE) by Ericson and Pakes (1994), and a general setup.

• A game is played over an infinite horizon.

• Time is discrete as indexed as t = 1, . . . ,∞; .

• There are N players indexed as i = 1, . . . , N .

• In each period t player i chooses an action Ai ∈ Ai. Each set
Ai is discrete with dimension Ai = |Ai|. Let A ≡ ×N

i=1Ai.

• At time t, a player i is also subject to a state (variable) xit

with discrete support Xi. This state is publicly observable.

• A player receives privately observed choice-specific shocks
εit = (ε1it, . . . , εAiit) ∈ RAi , independent across players i.



Markov Perfect Nash Equilibrium (2/7)
• The period-specific payoff for player i (at time t) is:

Πit (at,xt, εit;θ1) = π (at,xt;θ1) +
∑

a∈Ai

εait · 1 [Ait = a]

for at = (A1t, . . . , ANt) as played at t, xt = (x1t, . . . ,xNt).

• Given a discount factor β ∈ [0, 1], players aim at maximizing
the following expected present value of future payoffs.

∞∑
τ=t

βτ−tE [Πiτ (aτ ,xτ , εiτ ;θ1)|xt, εit]

• Implicit in this model is a specification of the probabilities to
transition across states (like Rust, 1987): q (xt+1|xt,at;θ2).

• The parameters of this model are collected as θ = (θ1,θ2).

• A Bayesian perfect equilibrium is too complex as a solution
concept for a high-dimensional game like this one.



Markov Perfect Nash Equilibrium (3/7)
• The MPNE is a simpler solution concept that in each period

makes strategies dependent only upon the current state.

• Let players hold beliefs σi (at|xt): a function representing
the subjective probability that at is realized given state xt.

• For X ≡ ×N
i=1Xi, let σi be the collection of player i’s beliefs.

σi ≡
{

{σi (at|xt)}at∈A

}
xt∈X

• Define the ex-ante value function as:

V (xt,σi;θ) ≡
∑
at∈A

σi (at|xt)

π (at,xt;θ1) +

+E [εit|xt,at] + β
∑
ξ∈X

q (ξ|xt,at;θ2)V (ξ,σi;θ)


where E [εit|xt,at] ≡

∑
a∈Ai

E [εait|xt] · 1 [Ait = a].



Markov Perfect Nash Equilibrium (4/7)
• A collection {(A∗

it;σ∗
i )}N

i=1 is a MPNE if for all the players,
their own action is a best response given the actions of the
others, and beliefs are consistent in equilibrium.

• Define here the choice-specific mean value function as:

U (Ai,x,σi;θ) ≡
∑

a−i∈A−i

σi (a−i|x)

π (Ai,a−i,x;θ1) +

+β
∑
ξ∈X

q (ξ|x,a;θ2)V (ξ,σi;θ)


where A−i ≡ ×j ̸=iAj is the set of all opponent strategies.

• In a MPNE, an action A∗
it ∈ Ai is a best response for a player

i = 1, . . . , N at time t if the following holds.
A∗

it = arg max
a∈Ai

(U (a,xt,σ
∗
i ;θ) + εait)



Markov Perfect Nash Equilibrium (5/7)
• To characterize consistency of beliefs, some more notation is

necessary. Write the ex ante probability that player i chooses
Ait ∈ Ai, given any beliefs σ and a state xt, as follows.

ψ (Ait,xt,σ;θ) ≡ P
(
Ait = arg max

a∈Ai

(U (a,xt,σ;θ) + εait)
)

• For j = 1, . . . , N , aggregate these probabilities as follows.

Ψ (at,xt,σj ;θ) =
N∏

i=1
ψ (Ait,xt,σj ;θ)

• Beliefs {σ∗
i }N

i=1 are consistent in equilibrium if σ∗
i = σ∗ for

i = 1, . . . , N and equate all the model-predicted probabilities
for all possible action profiles at ∈ A and states xt ∈ X.

σ∗
i (at|xt) = Ψ (at,xt,σ

∗;θ) = P (at|xt)

• Call P (at|xt) the choice probability of at conditional on xt.



Markov Perfect Nash Equilibrium (6/7)
Let A = {α0,α1, . . . ,αL} and X = {ξ1, . . . , ξQ}. Write:

p =



P (α1| ξ1)
...

P (αL| ξ1)

...

P (α1| ξQ)
...

P (αL| ξQ)


ψ (σi;θ) =



Ψ (α1, ξ1,σi;θ)
...

Ψ (αL, ξ1,σi;θ)

...

Ψ (α1, ξQ,σi;θ)
...

Ψ (αL, ξQ,σi;θ)


where σi is a vector of length LQ which, for i = 1, . . . , N , arrays
all the values of σi (αℓ| ξq) for ℓ = 1, . . . , L and q = 1, . . . , Q just
as p does. A MPNE thus admits a fixed point representation.

p = ψ (p;θ)



Markov Perfect Nash Equilibrium (7/7)
This characterization of a MPNE was studied by Pesendorfer and
Schmidt-Dengler (2008). Here are a few observations.

• Conditional choice probabilities and beliefs involving α0 are
omitted in the above as they are residually determined.

• By Brower’s fixed point theorem, a MPNE always exists.

• However, multiple equilibria are possible in this setting.

• The MPNE illustrated here is symmetric, as functions π (·)
and q ( ·| ·) are identical across all players. Symmetry reduces
the dimensionality of the problem, but may be relaxed.

• A MPNE easily generalizes to continuous state variables.

• Generalizing to a continuous action space A entails more
complications, especially regarding estimation.



Estimation of dynamic games (1/6)
To estimate θ using data {(a1t,x1t) , . . . , (aMt,xMt)}T

t=1 from M
markets, one typically proceeds in two steps as in Rust (1987).

As in Rust (1987), the model is semi-parametrically identified if
net of the discount factor β; the latter is typically calibrated.

In the first step, θ2 and, when necessary, p are estimated directly.
The second step about θ1 allows for two main approaches.

1. In full solution methods, θ1 is estimated by maximizing
a partial log-likelihood function:

θ̂1 = arg max
θ1∈Θ1

T∑
t=1

M∑
m=1

log Ψ
(
amt,xmt,p;θ1, θ̂2

)
where Ψ (·) is evaluated via (usually expensive) nested fixed
point algorithms. With multiple equilibria, this is a QMLE.



Estimation of dynamic games (2/6)
2. In a conditional choice probability approach, estimates

of p from the first step inform the following GMM problem:

θ̂1 = arg min
θ1∈Θ1

[
p −ψ

(
p;θ1, θ̂2

)]T
W
[
p −ψ

(
p;θ1, θ̂2

)]
where W is some suitable GMM weighting matrix. Given p,
ψ (·) may be evaluated for example via forward simulation.

Both approaches benefit from parametric assumptions about the
unobserved shocks εit. If these are all i.i.d. standard Gumbel:

Ψ
(
amt,xmt,p;θ1, θ̂2

)
=

N∏
i=1

exp
(
U
(
aimt,xmt,p;θ1, θ̂2

))
∑

a∈Ai
exp

(
U
(
a,xmt,p;θ1, θ̂2

))
which can be evaluated if function U (Ait,xt,σi;θ) is known; this
in turn depends on the ex-ante value function V (xt,σi;θ).



Estimation of dynamic games (3/6)
Like in the single-agent dynamic logit, V (xt,p;θ) can be derived
algebraically if p is known (or estimated) and X is discrete. Let:

π (xt;θ1) =

π (α0,xt;θ1) + E [εit|α0,xt]
...

π (αL,xt;θ1) + E [εit|αL,xt]


where expectations have a closed form in the Gumbel case; and:

v (p,θ) =

V (ξ1,p;θ)
...

V (ξQ,p;θ)

 π (θ1) =

π (ξ1;θ1)
...

π (ξQ;θ1)


and:

Q̂ (xt) ≡


q
(
ξ1
∣∣∣xt,α0; θ̂2

)
. . . q

(
ξQ

∣∣∣xt,α0; θ̂2
)

... . . . ...
q
(
ξ1
∣∣∣xt,αL; θ̂2

)
. . . q

(
ξQ

∣∣∣xt,αL; θ̂2
)


. . .



Estimation of dynamic games (4/6)
. . . and:

p̂ (xt) =


P̂ (α0|xt)

...
P̂ (αL|xt)

 p̂ =

 p̂ (ξ1)
...

p̂ (ξQ)


and lastly:

Ψ̂ =

p̂T (ξ1) . . . 0T

... . . . ...
0T . . . p̂T (ξQ)

 Q̂ =


Q̂ (ξ1)

...
Q̂ (ξQ)


then, similarly as in the single-agent model, one can express the
equilibrium ex-ante value function as a system of Q equations:

v
(
p̂,θ1, θ̂2

)
= Ψ̂π (θ1) + βΨ̂Q̂v

(
p̂,θ1, θ̂2

)
which, when solved, returns the values that are sought after.

v
(
p̂,θ1, θ̂2

)
=
[
I − βΨ̂Q̂

]−1
Ψ̂π (θ1)



Estimation of dynamic games (5/6)
In addition to methods derived from the dynamic logit tradition,
Bajari, Benkard and Levin (2007) developed one which is closer
to the literature on static games. In a nutshell, let:

Ṽ (Ait,xt,σi;θ) ≡ U (Ait,xt,σi;θ) +
∑

a∈Ai

εait · 1 [a = Ait]

and observe that a MPNE implies the following set of inequalites:

Ṽ (A∗
it,xt,σ

∗
i ;θ) ≥ Ṽ (Ait,xt,σ

∗
i ;θ)

for all players i and their suboptimal actions Ait ∈ Ai, Ait ̸= A∗
it,

and all xt ∈ X. This leads to the following population criterion:

Q0 (θ) =
ˆ
X

N∑
i=1

∑
a̸=A∗

it

∥∥∥Ṽ (A∗
it,xt,p;θ) − Ṽ (a,xt,p;θ)

∥∥∥
−
dG (xt)

whereG (xt) is a suitable distribution for xt. Depending on issues
of identification (induced e.g. by multiple equilibria), this allows
for both point and set estimation.



Estimation of dynamic games (6/6)
The estimation of dynamic games can entail complications on
the computational side, a traditional challenge to this literature.

• The framework based on the MPNE is tractable so long as N
is small. For the many-players case the literature has focused
on a solution concept called oblivious equilibrium, where
payoffs only depend upon statistics of the opponents’ actions.

• With N small enough and a continuous action space A,
which is popular in applications, a MPNE-based framework
is still tractable. However, the conditional choice probability
approach then requires to evaluate the empirical distribution
function of at given xt. Issues also apply to other methods.

• In general, extensions such as asymmetric information,
unobserved heterogeneity, and behavioral biases may
lead to increased computational complexity.



Dynamic games: empirical applications (1/2)
This introduction to dynamic games concludes with an overview
of selected empirical applications. Most study models of dynamic
oligopoly, and extend the basic framework to various degrees.

• Benkard (2004) studies competition between the three main
aircraft manufacturers: Boeing, Airbus and Lockheed. With
a dynamic model and learning-by-doing one can rationalize
why airplanes are initially sold below marginal cost.

• Ryan (2012) assesses the effect of environmental regulations
in the U.S. cement industry, where producers are subject to
capacity constraints that are costly to adjust. The estimates
suggest consumer welfare losses due to the regulations.

• Lee (2013) studies network effects in the video game console
industry, where the value of a console depends on the number
of exclusive games that become available for it over time.



Dynamic games: empirical applications (2/2)
• Goettler and Gordon (2011) analyze the PC microprocessor

duopoly, dominated by Intel and AMD. Microprocessors are
subject to endogenous technological obsolescence: consumers
like to replace them with more innovative releases. Through
counterfactual analysis, the paper suggests that a monopoly
run by Intel would lead to faster innovation (due to stronger
incentives for R&D) but also lower overall consumer welfare.

• Hashmi and Biesebroek (2016) show that in the automobile
industry, higher market power (estimated via BLP) provides
more incentives for firms to climb the quality ladder faster.

• Igami (2017) looks instead at competition in the market for
hard drives, where adopting newer technological standards is
cheaper for entrants than for incumbents because of product
cannibalization. The model allows to evaluate the incentives
that incumbents have for avoiding cannibalization and entry.


