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Wages and labor market outcomes
• The career of workers over their lifetimes can be “measured”

over multiple dimensions of interest: earnings, participation,
unemployment status conditional on participation, et cetera.

• Economists typically called these dimensions “labor market
outcomes.” Many research questions are about the empirical
search for the determinants of such outcomes.

• Labor market outcomes follow from individual choices and
as such they typically depend on one another. For example,
participation, labor supply and wages are intertwined in the
classical selection model by Heckman (1979, see Lecture 11).

• Most of this lecture centers on econometric methods for the
“decomposition” of wages between different contributing
factors. Later, this lecture overviews the connection between
these methods and the study of other economic outcomes.



Wage decomposition: introduction
• Economic theory predicts that wages are the result of a labor

market equilibrium where labor demand and supply meet.

• As per the labor demand function, wages equal the marginal
productivity of workers in their employing firms.

• Yet wages are notoriously unequal and wage inequality has
been soaring in many countries over time. Why?

• Econometric methods for the decomposition of wages aim to
divide the grand variance of (logarithmic) wages into some
meaningful components: mainly the one that depends on the
workers and the one that depends on firms – and more.

• This literature is known through the acronym “AKM” from
the seminal paper by Abowd, Kramarz and Margolis (1999)
and it entails methodological challenges of various sort.



A model for the decomposition of wages (1/10)

The regression equation introduced by AKM is as follows:

log Wit = αi +ψj(i,t) + xT
itβ+ εit

where:
• log Wit is the logarithm of worker i’s wage at time t;

• αi is a fixed effect specific to worker i (for i = 1, . . . , N);

• ψj(i,t) is a fixed effect specific to firm j (for j = 1, . . . , J);

• j (i, t) is a linkage function that identifies the employer of
worker i at time t;

• xit are some characteristics of worker i that are observed
at time t, with associated parameters β;

• εit is a residual error term.



A model for the decomposition of wages (2/10)
What is the objective of an “AKM” analysis? Consider a simpler
Mincer-like wage equation without any fixed effects:

log Wit = xT
itβ

∗∗ + εit

this model is known to typically explain about 30% of the grand
variance of log Wit. What about the remaining 70%?

Suppose that xit = 0 and εit = 0 for all i, t. Then:

Var [log Wit] = Var [αi] + Var
[
ψj(i,t)

]
+ 2Cov

[
αi,ψj(i,t)

]
where the first two terms represent the residual contributions of
workers and firms, respectively, to Var [log Wit].

The third term instead – the covariance – is typically interpreted
as the contribution of sorting (“high-wage workers at high-wage
firms,” and vice versa) occurring in the labor market.



A model for the decomposition of wages (3/10)

Rewrite the AKM model in matrix notation:

y = Dα+ Fψ+ Xβ+ ε

where:
• y is the vector that stacks the observations of log Wit;

• D is a matrix of worker dummy variables;

• F is a matrix of firm dummy variables, obtained via j (i, t);

• X is the matrix that stacks the observations of xT
it;

• ε is the vector that stacks the error terms εit;

• α is the collection of worker fixed effects αi;

• ψ is the collection of firm fixed effects ψj(i,t).



A model for the decomposition of wages (4/10)
Write θ ≡ (α,ψ,β). Interest typically falls on the estimation of
the variance-covariance matrix of the model’s parameters.

Var [θ] =

 Var [α] Cov [α,ψ] Cov [α,β]
Cov [ψ,α] Var [ψ] Cov [ψ,β]
Cov [β,α] Cov [β,ψ] Var [β]


This can be manipulated so as to derive economically meaningful
quantities. Occasionally, a secondary goal is to explain α and ψ
as a function of time-invariant characteristics of workers and firms
(this is performed e.g. via regressions for estimates α̂ and ψ̂).

Estimation is performed with “matched employer-employee”
(MEE) data, typically obtained from administrative sources, that
allow to construct the linkage function j (i, t) and matrix F. MEE
datasets are usually very large, and so is the resulting dimension
of θ: this leads to computational challenges.



A model for the decomposition of wages (5/10)
One reason that makes the AKM model popular is its generality.
Suppose that the term Fψ is omitted from the model. Then, the
model becomes a “traditional” wage equation for panel data.

log Wit = α∗
i + xT

itβ
∗ + εit

Let α∗ be the collection of worker fixed effects α∗
i . It follows that

by the algebra of the linear model, conditional on X, it is:

α∗ = α+
(
DTMXD

)−1
DTMXFψ

where MX = I − X
(
XTX

)−1
XT. If X is orthogonal to both D

and F this is the expression of an omitted variable bias, with:

α∗
i = αi + 1

T

T∑
t=1
ψj(i,t)

and straightforward interpretation. This kind of analysis is easily
extended to β∗, to the case where Dα is omitted, et cetera.



A model for the decomposition of wages (6/10)
Identification of the model rests on two key assumptions: one
is statistical, and the other one is a typical rank condition.

1. The statistical assumption is a seemingly standard condition
about mean-independence of the error term.

E [ε| D, F, X] = 0

This is called the “exogenous mobility” assumption due
to a key implication about conditioning on F: the error term
must be uncorrelated to changes in j (i, t) (omitted variables
have no bearing on the movement of workers across firms).
The implications are elaborated by Card, Heining and Kline
(2013) as it is discussed later.

Note that in the original paper by AKM, the error term εit was
assumed for simplicity to be uncorrelated across workers and over
time. However, more general structures can be allowed.



A model for the decomposition of wages (7/10)
2. The rank condition demands as usual that the cross-product

of the full “design matrix” has full rank. Such a matrix is:

W =

DTD DTF DTX
FTD FTF FTX
XTD XTF XTX


and the critical condition is that FTD (or DTF) has full row
(or column) rank. In actual MEE datasets this is inevitably
violated for some workers and firms, which must be therefore
expunged from the estimation sample.

Intuitively, if all the workers i of a firm j never leave it their
own effects αi are perfectly collinear with the firm effect ψj .
Thus, identification is based on workers who are movers.

In AKM parlance, the estimation sample is called the connected
set. More precisely, it is the connected component of a “bipartite”
network defined by the linkage function j (i, t).



A model for the decomposition of wages (8/10)
The intuition behind the movers-based algebraic identification is
best illustrated graphically. In the figure, circles represent firms,
dots are workers at t = 0, and arrows denote later movements.

Firm j Firm k

Firm ℓ

Adding movements delivers a connected set that includes firms j
and k (straight arrow), and/or k and ℓ (dashed arrow).



A model for the decomposition of wages (9/10)
The dimension of W makes inverting it generally impractical.
How to estimate the model, then? The usual approach (although
alternatives exist) proceeds in two steps.

1. First, estimate a first-differenced model for movers only:

log Wit − log Wi(t−1) =

= ψj(i,t) −ψj(i,t−1) +
(
xit − xi(t−1)

)T
β+

(
εit − ε(t−1)

)
for suitable observation pairs such that j (i, t) ̸= j (i, t − 1).
In some MEE datasets, this can still be quite expensive.

2. Then, recover worker effects using the full connected set:

α̂i = 1
Ti

Ti∑
t=t0i

(
log Wit − ψ̂j(i,t−1) − xT

itβ̂
)

where Ti is the total number of time periods (starting from
t0i) that worker i appears in the connected set.



A model for the decomposition of wages (10/10)
• The actual estimation performed in the original AKM paper

also involved some additional “auxiliary” variables Z aimed
at proxying for the correlation between D or X, and F.

• This allows AKM to simplify the estimation of θ and Var [θ]
via two alternative approaches (the “order-dependent” and
the “order-independent” ones) motivated on the assumptions
XTMZF = 0 and DTMZF = 0 (MZ is the residual-maker
matrix for Z). This solution is less common nowadays.

• AKM estimated their model on the French MEE data from
the Déclarations Annuelles des Salaires from 1976 to 1987,
featuring millions of observations (many of which unusable).

• They reported a rich set of results demonstrating the power
of their empirical framework to answer many questions about
wages and the labor market.



Questioning the assumptions (1/2)
• Following AKM, a large literature blossomed, as researchers

began to apply their framework on different MEE datasets.

• For about a decade, some consistent results emerged:

Var
[
ψj(i,t)

]
Var

[
αi +ψj(i,t)

] ≈ 0.25

that is the variance explained by firm effects is about 20-30%
of the total variance explained by fixed effects, and:

Cov
[
αi,ψj(i,t)

]
≤ 0

that is, the covariance between the two types of fixed effects
(sorting) is zero if not negative.

• These results, especially the non-positive covariance/sorting,
were often considered surprising if not unrealistic.



Questioning the assumptions (2/2)
The initial “AKM” literature thus led researchers to question the
key identifying assumptions, or their implications.

• The article by Card, Heining and Kline (2013; CHK) took
up the task of testing exogenous mobility, finding that
the violation of it is not a concern in typical MEE datasets.

• In two “critical” papers, Andrews, Gill, Schank and Upward
(2008, 2012; AGSU) showed that the rank condition is not
sufficient to guarantee consistent estimation of Var [θ], even
if θ is consistently estimated, when there are few movers.

• AGSU empirically showed that this limited mobility bias
is sizable: this might explain the puzzling results.

• The subsequent methodological literature, which is reviewed
later, addressed this problem directly.



Testing exogenous mobility (1/5)
• The paper by CHK is notable mainly for its test of exogenous

mobility. It has revitalized the “AKM” literature by proving
its potential to answer important real-world questions.

• It is useful to understand the setting studied by CHK: (West)
Germany, where wage inequality has risen dramatically since
the nineties, as documented by CHK themselves.

• A pivotal time in the history of German industrial relations
was 2003-2005, when the “Hartz” reforms were introduced;
these gave incentives to firms for mostly part-time, low-wage
job contracts and in addition cut unemployment benefits.

• CHK set out to study changes over time in the composition
of the variance of log-wages under the AKM framework. To
this end, they used MEE data from 1985 to 2009 maintained
by the Institut für Arbeitsmarkt- und Berufsforschung.



Testing exogenous mobility (2/5)
CHK provide a comprehensive discussion about the mechanisms
that can lead to endogenous mobility, and in particular to:

E [Fε] ̸= 0

that is, a correlation between firm indicators and the unobserved
component of log-wages. They are listed as follows.

1. Matching effects (the most important threat): over time,
workers might move to firms that are more “suited” to them
(and vice versa). In short, sorting occurs on the unobserved
transitory shock εit, and is not limited to αi and ψj(i,t).

2. Drift (a unit-root component of εit): if εit is persistent (e.g.
because of human capital accumulation of some kind) this
might predict the type of future employers.

3. Fluctuations (a minor problem): seasonal variations of εit

might correlate with mobility patterns for some reason.



Testing exogenous mobility (3/5)
CHK suggest that if mobility is endogenous, the effect of moving
between different types of firms (say, having effects ψ1 and ψ2)
should be asymmetric. If a worker moves in one direction:

E
[
log Wit − log Wi(t−1)

∣∣∣ j (i, t) = 2, j (i, t − 1) = 1
]

=

= ψ2 −ψ1 + E
[
εit − εi(t−1)

∣∣∣ j (i, t) = 2, j (i, t − 1) = 1
]

while if the same worker moves in the opposite direction:

E
[
log Wit − log Wi(t−1)

∣∣∣ j (i, t) = 1, j (i, t − 1) = 2
]

=

= ψ1 −ψ2 + E
[
εit − εi(t−1)

∣∣∣ j (i, t) = 1, j (i, t − 1) = 2
]

where the “bias” terms on the right hand side are expected to be
both positive (for example, because of matching effects).

Without the bias terms, the effect of moving is symmetric: here,
it would be ψ2 −ψ1 and ψ1 −ψ2, respectively.



Testing exogenous mobility (4/5)
• CHK suggest to perform event studies about the effect on

log-wages of the movement of workers between firms that
belong to different percentiles of the distribution of the firm
effects ψj (as estimated by the AKM model).

• Specifically, CHK worked with quartiles of ψj , examining
movements from the top (fourth) quartile to the first, second
and third, from the first to the other three, and so on.

• Movements between any pair of quartiles, but in the opposite
direction, are strikingly symmetric (this is especially true
for the two extreme quartiles).

• This suggests that exogenous mobility is a good assumption
to maintain, and is not the driver of the unrealistic results.

• This finding has been later replicated in other MEE datasets.



Testing exogenous mobility (5/5)
• CHK also provide another useful test: if endogenous mobility

occurs, the AKM residuals should be on average non-zero
for selected combinations of workers (e.g. with high αi) and
firms (e.g. with high ψj). This can be tested!

• CHK calculated the average residuals over a grid defined by
deciles of the estimated effects of the two types. They found
large deviations from zero only for cells where either workers
or firms from the respective bottom decile appear.

• Then CHK perform the variance decomposition separately
for different intervals of the recent German history.

• They found that in 1985-1991, the results are “traditional,”
but in 2002-2009, the contribution of Var [ψj ] rises and that
of 2Cov [αi,ψj ] is positive and close to it! Overall, “sorting”
effects explain about 34% of the increase in wage inequality.



The limited mobility bias (1/5)
How are the AKM variance components of interest traditionally
estimated? Note that since matrices D and F are non-stochastic,
in the population (writing j for j (i, t) as a shorthand):

Var [α] = αTDTADα
N∗ =

N∑
i=1

Ti∑
t=t0i

(αi − E [αi])2

N∗

Var [ψ] = ψTFTAFψ
N∗ =

N∑
i=1

Ti∑
t=t0i

(ψj − E [ψj ])2

N∗

Cov [α,ψ] = αTDTAFψ
N∗ =

N∑
i=1

Ti∑
t=t0i

(αi − E [αi]) (ψj − E [ψj ])
N∗

where N∗ is the total size of the data (N∗ = NT if the sample is
balanced, N∗ =

∑N
i=1 Ti if the sample is unbalanced) and:

A = I − 1
N∗ ι

Tι

is the “demeaning” matrix of conformable N∗ × N∗ size.



The limited mobility bias (2/5)
By the analogy principle, the sample analogues of these moments:

V̂ar [α] = α̂TDTADα̂
N∗ =

N∑
i=1

Ti∑
t=t0i

(
α̂i − α̂

)2

N∗

V̂ar [ψ] = ψ̂TFTAFψ̂
N∗ =

N∑
i=1

Ti∑
t=t0i

(
ψ̂j − ψ̂

)2

N∗

Ĉov [α,ψ] = α̂TDTAFψ̂
N∗ =

N∑
i=1

Ti∑
t=t0i

(
α̂i − α̂

) (
ψ̂j − ψ̂

)
N∗

where α̂ and ψ̂ are the empirical averages of the estimated effects
of the two kinds, deliver intuitive estimators of the quantities of
interest. These formulae were used by both AKM and CHK.

These estimators are biased. This is shown under the simplifying
AKM assumption of homoscedasticity: Var [ε| W] = σ2I.



The limited mobility bias (3/5)
First, rewrite the model by partialing out X.

MXy = MXDα+ MXFψ+ MXε

By repeated applications of the Frisch-Waugh-Lovell theorem:

α̂ =
(
DTQFD

)−1
DTQFy

ψ̂ =
(
FTQDF

)−1
FTQDy

where for G = D, F, it is as follows.

QG ≡ MX

[
I − MXG

(
GTMXG

)−1
GTMX

]
MX

By applying the typical decomposition of OLS, α̂ and ψ̂ can be
expressed as functions of the true parameters.

α̂ = α+
(
DTQFD

)−1
DTQFε

ψ̂ = ψ+
(
FTQDF

)−1
FTQDε



The limited mobility bias (4/5)
The expectations of the key estimators are calculated as follows.

E
[
α̂TDTADα̂

N∗

]
= α

TDTADα
N∗ + σ2

N∗ Tr
[(

DTQFD
)−1

DTAD
]

E
[
ψ̂TFTAFψ̂

N∗

]
= ψ

TFTAFψ
N∗ + σ2

N∗ Tr
[(

FTQDF
)−1

FTAF
]

E
[
α̂TDTAFψ̂

N∗

]
= α

TDTAFψ
N∗ +

+ σ2

N∗ Tr
[
QDD

(
FTQDF

)−1
FTAF

(
FTQDF

)−1
FTQD

]
The expression of the covariance bias is formidable. In their 2008
paper, AGSU show that this term is negative and it decreases
in magnitude (towards zero) as the number of movers increases.

Instead, the two variance terms are shown to be always positive:
they are proportional to traces of semi-definite positive matrices.



The limited mobility bias (5/5)
• Intuitively, the two variance estimators are positively biased

because they are themselves based on uncertain α̂, ψ̂, and
the estimation errors sum up quadratically.

• Conversely, the covariance estimator is negatively biased to
compensate, as all terms must sum up to the grand variance
of the logarithmic wages. Moreover, the lack of many movers
introduces noise in the estimation of the covariance: in this
case, estimation errors add up negatively.

• As identification of different effects depends on the existence
of movers, so does the precision of the estimates. This is akin
to the failure of the rank condition in linear models being an
extreme, “perfect” case of multicollinearity.

• In their 2012 paper, AGSU empirically show the bias using
samples of MEE data with varying proportions of movers.



Correcting the limited mobility bias

The work by AGSU has been key to understand the problem in
technically rigorous terms, and spurred the search for solutions.
Research in this regard has taken three major directions.

1. The statistically “orthodox” approach would be to correct
for the bias analytically. This is not so straightforward here:
the current approach relies on the “leave-out” estimator by
Kline, Saggio and Sølvsten (2020; KSS).

2. Alternatively, one can model α and ψ as random effects
that are not estimated: instead, researchers would estimate
their variance components directly. This approach demands
restrictive assumptions as in all random effects models.

3. Bonhomme, Lamadon and Manresa (2019; BLM) propose a
latent variables framework that allows for both non-linear
and dynamic effects of worker and firm “discrete” types.



Leave-out estimation (1/8)

What follows is an overview of the approach developed by KSS,
the one most in line with the original AKM framework.

Their results, however, have more general implications: they aim
at consistent estimation of any quadratic form of the kind:

θ = βTCβ

where C is some given full-rank, non-stochastic matrix and β is
the parameter vector of a linear model Yi = xTβ+εi. Clearly, C
may be chosen so that θ represents an AKM variance-covariance
component, yet the result by KSS transcend this particular case.

In particular:
• if C is positive semi-definite, θ is a variance component;
• if C is non-definite, θmay be called a covariance component.



Leave-out estimation (2/8)
A näıve “plug-in” estimator of θ: θ̂P I = β̂T

OLSCβ̂OLS , is biased:

E
[
θ̂P I

]
− θ = Tr

(
CVar

[
β̂OLS

])
=

N∑
i=1

Biiσ
2
i

where, for Sxx ≡
∑N

i=1 xixT
i and under heteroscedasticity:

• Bii ≡ xT
i S−1

xxCS−1
xxxi is a weight specific to observation i;

• σ2
i ≡ E

[
ε2

i

∣∣xi
]

is the variance of observation i’s error term.

If the model were homoscedastic (σ2
i = σ2 for i = 1, . . . , N), this

is easy to correct for. A “homoscedasticity only” estimate of θ is:

θ̂HO = β̂T
OLSCβ̂OLS −

N∑
i=1

Bii

N − K

N∑
i=1

(
yi − xT

i β̂OLS

)2

exploiting the standard unbiased estimator of σ2. KSS devise an
analogous approach for the general, heteroscedastic case.



Leave-out estimation (3/8)
The bias correction devised by KSS is based on a “leave-i-out”
OLS estimator of β, which is calculated by removing observation
i from the standard OLS formula.

β̂−i =
(
Sxx − xixT

i

)−1∑
ℓ̸=i

xℓyℓ

This delivers an unbiased estimator of σ2
i .

σ̂2
i = yi

(
yi − xT

i β̂−i

)
Thus, an unbiased estimator for θ can be obtained as follows.

θ̂KSS = β̂T
OLSCβ̂OLS −

N∑
i=1

Biiσ̂
2
i

This also leads to an unbiased estimator of Var
[
β̂OLS

]
.

V̂ar
[
β̂OLS

]
= S−1

xx

(
N∑

i=1
xixT

i σ̂
2
i

)
S−1
xx



Leave-out estimation (4/8)
It may be complicated to calculate N leave-i-out estimators every
time. KSS suggest to exploit the easier-to-compute N quantities:

Pii ≡ xT
i S−1

xxxi

since they deliver a simpler expression for the yi − xT
i β̂−i terms.

yi − xT
i β̂−i = yi − xT

i

(
Sxx − xixT

i

)−1∑
ℓ̸=i

xℓyℓ

= yi − xT
i

(
S−1
xx + S−1

xxxixT
i S−1

xx

1 − Pii

)(
N∑

ℓ=1
xℓyℓ − xiyi

)

=
(

1 + Pii + P 2
ii

1 − Pii

)
yi −

(
1 + Pii

1 − Pii

)
xT

i β̂OLS

= yi − xT
i β̂OLS

1 − Pii

The second line uses the Sherman-Morrison-Woodbury formula.



Leave-out estimation (5/8)
The KSS estimator can also be motivated via a change in variable
x̃i ≡ CS−1

xxxi. Observe that:

θ = βTCβ = βTSxxS−1
xxCβ =

N∑
i=1
βTxix̃T

i β =
N∑

i=1
EY |x

[
Yix̃T

i β
]

and thanks again to the Sherman-Morrison-Woodbury formula,
the KSS estimator can also be written as follows.

θ̂KSS =
N∑

i=1
yix̃T

i β̂−i =
N∑

i=1
yix̃T

i

(
S−1
xx + S−1

xxxixT
i S−1

xx

1 − Pii

)∑
ℓ ̸=i

xℓyℓ

=
N∑

i=1

[
yix̃T

i β̂OLS − Biiy
2
i + BiiyixT

i β̂−i

]

= β̂T
OLSCβ̂OLS −

N∑
i=1

Biiσ̂
2
i



Leave-out estimation (6/8)
This is a technical digression. The previous derivation exploited
the following relationship:

N∑
i=1

yix̃T
i S−1

xx

∑
ℓ̸=i

xℓyℓ =
N∑

i=1
yix̃T

i β̂OLS −
N∑

i=1
x̃T

i S−1
xxxiy

2
i

=
N∑

i=1
yix̃T

i β̂OLS −
N∑

i=1
xT

i S−1
xxCS−1

xxxi︸ ︷︷ ︸
=Bii

y2
i

=
N∑

i=1
yixT

i S−1
xxCβ̂OLS −

N∑
i=1

Biiy
2
i

= β̂T
OLSCβ̂OLS −

N∑
i=1

Biiy
2
i

. . . and. . .

Biiy
2
i − BiiyixT

i β̂−i = Biiyi

(
1 − xT

i β̂−i

)
= Biiσ̂

2
i



Leave-out estimation (7/8)
. . . and. . .

N∑
i=1

yix̃T
i

S−1
xxxixT

i S−1
xx

1 − Pii

∑
ℓ̸=i

xℓyℓ =
N∑

i=1
yi xT

i S−1
xxCS−1

xxxi︸ ︷︷ ︸
=Bii

xT
i β̂−i︸ ︷︷ ︸
=ŷi

where ŷi above is derived as follows.

ŷi = xT
i S−1

xx

1 − Pii

(
N∑

ℓ=1
xℓyℓ − xiyi

)

= xT
i β̂OLS

1 − Pii
− Piiyi

1 − Pii
+ yi − yi

1 − Pii

= yi − yi − xT
i β̂OLS

1 − Pii

= yi − yi + xT
i β̂−i

= xT
i β̂−i



Leave-out estimation (8/8)
• After introducing their estimator, in their paper KSS show

its potential across different settings, although the primary
motivation is the AKM model.

• Then, KSS derive its asymptotic properties: a daunting task
in this case (the key estimator is a quadratic form).

• They also provide routines for the quick estimation of the N
key weights Pii using standard computing languages.

• KSS also test their estimator on MEE data from the Italian
region of Veneto, comparing it with both the “plug-in” (PI)
and the “homoscedasticity only” (HO) estimators.

• Their estimates of the correlation between α and ψ are zero
or negative using the PI, in the range 5-15% with the HO,
and in the range 20-30% with the KSS estimator.



A random effects approach (1/3)
• In a review of the literature, Bonhomme et al. (2020) argue

that a random effects approach is a viable alternative.

• In this environment the worker fixed effects α are assumed
to have some distribution and moments that depends on D.

• Identification requires some covariance restrictions:

Cov (αi,ψj) = 0 for j /∈ J (i)
Cov

(
ψj ,ψj′

)
= 0 for j ̸= j′

Cov (εit,ψi′t′) = 0 for i ̸= i′, t ̸= t′

where J (i) = {j : j ̸= j (i, t) ∀t = t0i, . . . , Ti} is the set of
firms where worker i never works.

• This assumptions may not be very desirable, but they could
be somewhat relaxed (the ones reported are illustrative).



A random effects approach (2/3)
To understand how identification works, consider any two workers
i and i′ who initially work at the same firm, and subsequently
move to two different firms: at time t and t′ respectively. Assume
that j (i, t) /∈ J (i′) and j (i′, t′) /∈ J (i).

The analysis of movers in a first differences model illustrates
identification of key moments. Let (for simplicity) xit = 0 for all
workers i and time periods t. One can show that:

Cov (log Wit′ − log Wit, log Wi′t′ − log Wi′t) = Var
(
ψj(i,t)

)
as well as the following (both results are shown next).

Cov (log Wit′ − log Wit, log Wi′t′) = −Cov
(
ψj(i′,t),αi′

)
These moments are estimable via minimum distance; Bonhomme
et al. show that this approach delivers very precise estimates.



A random effects approach (3/3)

The variance of the firm effects is identified as follows.

Cov (log Wit′ − log Wit , log Wi′t′ − log Wi′t) =
= Cov

(
ψj(i,t′) −ψj(i,t) + εit′ − εit,

ψj(i′,t′) −ψj(i′,t) + εi′t′ − εi′t

)
= Cov

(
ψj(i,t′) −ψj(i,t),ψj(i′,t′) −ψj(i′,t)

)
= Cov

(
ψj(i,t),ψj(i′,t)

)
= Var

(
ψj(i,t)

)
The covariance between both effect types is identified as follows.

Cov (log Wit′ − log Wit, log Wi′t′) =
= Cov

(
ψj(i,t′) −ψj(i,t) + εit′ − εit,αi′ +ψj(i′,t′) + εi′t′

)
= Cov

(
ψj(i,t′) −ψj(i,t),αi′ +ψj(i′,t′)

)
= Cov

(
ψj(i,t′) −ψj(i,t),αi′

)
= −Cov

(
ψj(i′,t),αi′

)



Discrete types of workers and firms (1/10)
• Random effects have appealing features, but they come with

costly assumptions. At the same time, they afford the option
to estimate more general models.

• The random effects framework proposed by BLM features a
major innovation: worker and firm effects can possibly enter
non-linearly and dynamically into the log-wage equation.

• This allows to estimate economically meaningful effects: the
interaction between worker and firm effects (e.g. “matching”
effects) and the dependence of today’s wage on the past wage
and a worker’s past employers.

• These options come at a cost: the types of both workers and
firms are assumed to belong to a discrete set.

• The estimation approach is original and deserves discussion.



Discrete types of workers and firms (2/10)

Consider the following model, called “static” by BLM.

log Wit = at (cit) + bt (cit) αi + xT
itβ+ εit

where, contrasting with AKM:
• αi is a random effect specific to worker i; it is assumed that

the support of αi is a discrete set of dimension L;

• cit = c (j (i, t)) is the class (type) of worker i’s employer at
time t; it assumed that the image of c (·) – and the support
of cit – is a discrete set of dimension C;

• at (·) and bt (·) are two arbitrary, unknown functions of cit;
they are possibly (though not necessarily) time-dependent.

Notably, the AKM model is a special case of this model, where
L = N , C = J , at (cit) = ψj(i,t) and bt (cit) = 1 for all (i, t) pairs.



Discrete types of workers and firms (3/10)
The aim of BLM is to estimate the full distributions of log-wages
across different types of workers and firms, so as to learn insights
on the labor market and on the interaction effects bt (·).

To this end, BLM introduce two assumptions for their “static”
model, which resemble and extend the AKM assumptions.

Let mit = 1 denote that worker i moves to a new firm in period
t + 1. Also let Yit = log Wit. The assumptions are as follows.

1. Exogenous mobility: mit, ci(t+1), xi(t+1) are independent
of (Yit0i , . . . , Yit) conditional on all previous realizations of
mis, ci(s+1) and xi(s+1) for all s < t, and on αi.

2. Serial independence: Yi(t+1) is independent of all previous
realizations of Yi(s+1), mis, ci(s+1) and xi(s+1) for all s < t,
conditional on αi, ci(t+1), xi(t+1) and mit = 1.



Discrete types of workers and firms (4/10)

Under these assumptions, the joint c.d.f. of movers’ log-wages
before and after the move (occurred between t = 1 and t = 2) is:

P
[
Yi1 ≤ y1, Yi2 ≤ y2| ci1 = c, ci2 = c′, mi1 = 1

]
=

=
L∑

α=1
Fcα (y1) F m

c′α (y2) pcc′ (α)

where:
• Fcα (y1) is the c.d.f. of log-wages for workers of type α who

are employed in firms of class c;

• F m
c′α (y2) is the c.d.f. of log-wages for movers of type α who

are employed in firms of class c′;

• pcc′ (α) is the proportion of workers of type α who move from
a firm of class c to a firm of class c′ between t = 1 and t = 2.



Discrete types of workers and firms (5/10)
In their Theorem 1, BLM prove that the components of this joint
c.d.f. – as well as the unconditional initial type proportions qc (α)
at t = 1 – are non-parametrically identified in a connected set.

This identifies “ratios” bt (c′) /bt (c) (for c ̸= c′) of the interaction
effects across firm types. An example illustrates the intuition.

• Let C = 2: there are only two firm types.

• Also let xit = 0 for all pairs (i, t), for simplicity.

• Consider workers who move between t = 1 and t = 2.

• Some move from c = 1 to c = 2, the others make the reverse
step from c = 2 to c = 1 (as in the mover analysis by CHK).

• In both subgroups, there are workers of different type αi.
The “average type” is E12 [αi] in the former subgroup, and
E21 [αi] in the latter.



Discrete types of workers and firms (6/10)
Let bt (·) = b (·) be constant in time. By the two assumptions:

EW [log Wit] = a (cit) + b (cit)EW [αi]

where both expectations are taken with respect to a subset of the
worker population W. Let these be the ‘12’ and ‘21’ subgroups
(to be used as subscripts instead of W) from the example; then:

E12 [log Wi2] − E21 [log Wi1] = b (2) {E12 [αi] − E21 [αi]}
E12 [log Wi1] − E21 [log Wi2] = b (1) {E12 [αi] − E21 [αi]}

and if E12 [αi] ̸= E21 [αi] (a “rank condition”):

b (2)
b (1) = E12 [log Wi2] − E21 [log Wi1]

E12 [log Wi1] − E21 [log Wi2]

hence, the ratio b (2) /b (1) is identified. This can be generalized
to C > 2, time effects on b (·), and covariates xit.



Discrete types of workers and firms (7/10)
The BLM estimation approach proceeds in two steps, plus some
“post-estimation” analysis.

1. The first step identifies firm types non-parametrically. This
adapts a “k-means” classification algorithm borrowed from
statistics and machine learning, by solving the problem

min
c(1),...,c(J);H1,...,HC

N∑
j=1

Nj

ˆ
R

(
F̂j (y) − Hc(j)

)2
dµ (y)

where:
• Nj is the number of workers at firm j;
• F̂j (y) is the empirical c.d.f. of log-wages in firm j;
• Hc is some c.d.f. for c = 1, . . . , C;
• µ (y) is a discrete or continuous measure.



Discrete types of workers and firms (8/10)
2. Having recovered estimates of firm classes ĉ (j) for all firms

j = 1, . . . , J , in the second step one can estimate all key
parameters of the log-wages distributions. Using the sample
of all job movers Nm, by the two assumptions one can write
a log-likelihood function for two time periods t = 1, 2.

log Lm
12 (θp,θf ,θfm) =

Nm∑
i=1

C∑
c=1

C∑
c′=1

1 [ĉi1 = c]1
[
ĉi2 = c′]×

× log
(

L∑
α=1

pcc′ (α;θp) fcα (yi1;θf ) fm
c′α (yi2;θfm)

)

• The worker type weights pcc′ are treated as probabilities
of a mixture model. This demands θ̂p, θ̂f and θ̂fm to
be estimated via an “EM” algorithm (overviewed later).

• The estimates θ̂f are exploited to recover the proportion
of types qc (α) in the full worker population at t = 1.



Discrete types of workers and firms (9/10)
BLM also propose a more extended “dynamic” model:

log Wit = ρt log Wi(t−1) + a1t (cit) + a2t

(
ci(t−1)

)
+

+ bt (cit) αi + xT
itβ+ εit

where, contrasting with the “static” case:
• parameter ρt measures the time dependence of log-wages

on its own past realization;

• a1t (·) and a2t (·) are “fixed effects” that depend on the class
of the current and previous employer, respectively.

To achieve identification, BLM propose “Markovian” versions of
their assumptions: future key variables are independent of their
past realizations conditional on the current ones. The resulting
Theorem 2 (identification) and extended estimation framework
are based on four time periods rather than two.



Discrete types of workers and firms (10/10)
• BLM estimate their static model on Swedish MEE data for

L = 6 and C = 10 (the results seem robust to other choices).
In the second step of their estimation approach, they assume
fcα (·) and fm

c′α (·) to be log-normal.

• They provide nice “visual” representations of their estimates
about discrete types, which show that sorting indeed occurs
and that lower-type workers especially benefit from the most
higher-type employers.

• These results are confirmed by an AKM exercise in variance
decomposition using projected data based on the estimates
of the static model. There is evidence for complementarities
bt (·), but these appear small in magnitude.

• The dynamic model yields statistically significant estimates
of ρt as well as large “previous employer” effects a2t (·).



Mixture models and the EM algorithm (1/4)
To understand estimation in BLM’s second step, it is quite useful
to overview the statistical approach to mixture models: models
for data that are presumed originated from multiple populations.

A random variable X follows a (finite) mixture distribution if
its c.d.f. can be written as:

FX (x;θ,π) =
C∑

c=1
πcFc (x;θc)

where for c = 1, . . . , C, Fc (x;θc) is a c.d.f. with parameters θc,
πc ∈ [0, 1], θ = (θ1, . . . ,θC), π = (π1, . . . ,πC), and

∑C
c=1 πc = 1.

• An analogous expression applies to the p.m.f. or p.d.f. of X.

• This is a model for populations that originate from “mixing”
C subpopulations with associated latent variables, whose
c.d.f.s are Fc (x;θc) and whose weights π are unknown.



Mixture models and the EM algorithm (2/4)
A prominent mixture model is the Gaussian mixture, where all
the Fc (x;θc) distributions are normal and where θc =

(
µc,σ

2
c

)
are the corresponding location and scale parameter.

The figure below represents a Gaussian mixture distribution for
C = 2 (solid line) with π1 = 1−π2 = 0.6. The latent distributions
(dashed lines) have

(
µ1,σ2

1
)

= (1, 1) and
(
µ2,σ2

2
)

= (3, 4).
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Mixture models and the EM algorithm (3/4)
How to estimate the parameters (θ,π)? The log-likelihood reads:

log L (θ,π| x1, . . . , xN ) =
N∑

i=1
log

(
C∑

c=1
πcfc (xi;θc)

)

given a random sample {xi}N
i=1. This is not well suited to MLE.

The First Order Conditions for one parameter subset θc give:

∂ log L (θ,π| x1, . . . , xN )
∂θc

=
N∑

i=1
φc (xi;θ,π) ∂ log fc (xi;θc)

∂θc

where:
φc (xi;θ,π) = πcfc (xi;θc)∑C

c′=1 πc′fc′ (xi;θc′)
is the posterior probability that observation i belongs to group c.
Note (e.g. from the Gaussian mixture’s case) that if the N values
of φc (xi;θ,π) were known, it would be possible to solve for the
θ parameters, and thus the π weights could also be retrieved.



Mixture models and the EM algorithm (4/4)
A popular solution is the expectation-maximization (E-M or
“EM”) iterative algorithm. Given some initial values

(
θ(h),π(h)

)
,

the algorithm proceeds in two steps:

1. E-step: calculate the N posteriors φ(h)
c

(
xi;θ(h),π(h)

)
;

2. M-step: update the values
(
θ(h+1),π(h+1)

)
from the FOCs;

and iterate until convergence.

The EM algorithm can be generalized to a multivariate mixture
model where the subpopulation weights are functions of the data:

Fx (x;θp,θf ) =
C∑

c=1
pc (x;θpc) Fc (x;θfc)

where θp = (θp1, . . . ,θpC), θf = (θf1, . . . ,θfC) and pc (x;θpc)
has e.g. a multinomial logit form. The BLM model is a particular
case of this, where Fc (x;θfc) is the joint c.d.f. of mover wages.



Origin effects and wage dynamics (1/5)
• The idea to allow for the effect of a worker’s past employers

has been recently introduced in a linear wage model as well.
In particular, Di Addario, Kline, Saggio and Sølvsten (2021;
DAKSS) estimate the following augmented AKM model:

log Wit = αi +ψj(i,t) + λj(i,t−1) + xT
itβ+ εit

where λj(i,t−1) is the effect of worker i’s employer at t − 1 (it
is also allowed to capture unemployment or first time jobs).

• Identification of this model is based on a stricter definition
of “connected set:” any three firms in the set must be linked
via a “closed walk” determined by worker movements.

• DAKSS adapt a leave-out approach to estimate the variance
components of this model using Italian MEE data from the
Istituto Nazionale di Previdenza Sociale: the “origin effects”
λj(i,t−1) seem to explain little of the grand variance of wages.



Origin effects and wage dynamics (2/5)
The intuition about identification is best illustrated graphically.

Origin network (t = 1)

λ1

λ2 λ3

λe

∆w5

∆w3

∆w4

∆w1

∆w2

Destination network (t = 2)

ψ1

ψ2 ψ3

∆w2 ∆w1

∆w5

∆w3
∆w4

Let wi = log Wi. The figures represent a network of five workers
and three firms; edges represent worker movements over two time
periods. Two workers move first from an external firm e to firm 1
and later to firm 2 or 3 (continuous edges). Labels superimposed
on edges indicate what wage changes identify what parameters.



Origin effects and wage dynamics (3/5)
A very attractive feature of this model is its connection with the
literature about “random” job search. This is best illustrated via
a stylized version of the model by Postel-Vinay and Robin (2002).

• Workers have productivity ϵ, derive utility U (w) from wage
w if employed, and utility ϵb if unemployed.

• Firms have productivity p, which leads to a marginal product
of ϵp when they hire a worker of type ϵ.

• Workers “randomly search” firms even if employed, leading
them to meet firm types drawn from a distribution F (·).

• Random search is governed by a survival function F (·).

• Any worker employed at a firm of type q will only move to
a randomly met firm of type p > q which offers a “poaching
wage” that fully compensates the worker for the movement.



Origin effects and wage dynamics (4/5)
Postel-Vinay and Robin show that such a poaching wage ϕ (ϵ, p, q)
must satisfy, given a constant κ ≥ 0 that captures other features
of the model (arrival, discount and separation rates):

U (ϕ (ϵ, p, q)) = U (ϵq) − κ
ˆ p

q
F (x) U ′ (ϵx) ϵdx

that is, ϕ (ϵ, p, q) yields a utility superior to the best counteroffer
that is affordable by the incumbent employer (w = ϵq), minus a
compensating differential for the change in expected future utility
that derives from searching while employed (the integral). In this
model, unemployment is treated as a firm of type b.

• The parameters of this model govern the dynamics of wages
in a worker’s employment history.

• The literature on “random” search provides a framework for
estimating these parameters based on “indirect” inference
(an extension of the Method of Simulated Moments).



Origin effects and wage dynamics (5/5)
Assuming a logarithmic utility U (w) = log (w), by this model:

log (ϕ (ϵ, p, q))︸ ︷︷ ︸
=Wit

= log (ϵ)︸ ︷︷ ︸
=αi

+ I (p)︸ ︷︷ ︸
=ψj(i,t)

+ log (q) − I (q)︸ ︷︷ ︸
=λj(i,t−1)

for a worker i who moves between t = 1 and t. By the definition:

I (z) ≡ κ

ˆ ∞

z

F (x)
x

dx

I (p) and I (q) follow from the Fundamental Theorem of Calculus.

• The connection with the DAKSS model is straightforward.

• It also holds for some more general random search models.

• This loads the DAKSS parameters with interpretation: e.g.
for a firm j with productivity p, ψj + λj = log (p) holds; it
also implies negative correlation between ψj and λj .


