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Measuring externalities
• Economic theory posits that externalities occur in a variety

of different settings. Some types of externalities are framed
as spillover effects (for example, knowledge/skill diffusion).

• Sociology is also traditionally interested in the consequences
of social interactions, like peer effects at school.

• Who “spills over” on whom, to what extent, and why them?
All these questions call for a suitable econometric framework.

• Empirical observation and everyday experience suggest that
social interactions have a nuanced networked structure.

• The original interest for spillover and peer effects prompted
the development of econometric models for interactions that
occur in networks. In parallel (and loosely relatedly), models
for the study of network formation have also emerged.



A set of interrelated frameworks
This lecture overviews some key econometric models for studying
social effects and interactions, and it proceeds as follows.

1. The traditional “linear-in-means” model, its related issues
and some early empirical literature are reviewed first.

2. A self-contained, brief introduction to networks follows.

3. The standard framework for the study of spillover and peer
effects using networks is presented, alongside its connection
with spatial econometrics and related empirical studies.

4. A brief introduction to linear penalized estimators allows to
review models that infer networks from panel data.

5. Lastly, models of network formation are overviewed along
a discussion of related theoretical and econometric issues.



The linear-in-means model (1/5)
• In a seminal article, inspired by some literature in sociology,

Manski (1993) discussed a simple model for the analysis of
“social effects” (a broad, encompassing term).

• Let observations be partitioned across groups: C (i) denotes
the set of all group mates of observation i (excluding i), for
i = 1, . . . , N . Let |C (i)| be the number of i’s group mates.

• This group structure is transitive: if j ∈ C (i) and k ∈ C (j),
it holds that k ∈ C (i) too, i ∈ C (k), et cetera.

• Let there be a dependent variable Yi which can possibly
depend on the effect of social interactions (e.g. consumption
choices, grades at school, technology adoption, et cetera).

• Let there also be some independent variable Xi capturing
some predetermined individual characteristic.



The linear-in-means model (2/5)
• The typical linear-in-means model is as follows.

Yi = α + β
1

|C (i)|
∑

j∈C(i)
Yj + γXi + δ

1
|C (i)|

∑
j∈C(i)

Xj + εi

• The group means of both Yi and Xi, for every observation,
enter linearly into the model (on the right-hand side).

• Here, parameter β measures the endogenous effect on Yi

that is due to “social,” “peer” or other “spillover” effects. It
captures co-movement of Yi in the group.

• Instead, parameter δ measures the exogenous effect, also
called contextual effect, that captures the impact upon Yi

of a group’s average characteristic Xi.

• The model easily extends to multiple independent variables
Xi (with exogenous effects that are also multidimensional).



The linear-in-means model (3/5)
• What is the theoretical rationale for the endogenous effect?

It is typically postulated that β captures social mechanisms
that lead to correlated behavior.

• An example is a model where individuals choose Yi while it
causes externalities, and individual utility is quadratic.

Ui (Y1, . . . , YN ; X1, . . . , XN ; εi) = β
1

|C (i)|
∑

j∈C(i)
YjYi+

+

α + γXi + δ
1

|C (i)|
∑

j∈C(i)
Xj + εi

Yi − 1
2Y 2

i

The Nash equilibrium delivers the linear-in-means model.

• Different specifications of utility, e.g. one where individuals
have a preference for conformity in the choice of Yi (Blume,
Brock, Durlauf and Jayaraman; 2015) yield a similar model.



The linear-in-means model (4/5)
• A key issue of this model, as observed by Manski, is that it

is not identified in many relevant settings.

• In particular, while both parameters β and δ are interesting
in their own right, often they cannot be disentangled.

• Specifically, expectations of Yi that condition on each group’s
Xj , for j ∈ C (i), cannot be exploited for identification as it
is typical in linear models. With a liberal use of notation:

E [Yi| C (i)] =
(

α

1 − β

)
+
(
γ + δ

1 − β

)
E [Xj | C (i)]

thus, the parameters (α,β,γ, δ) are not separately identified.

• This was called reflection problem by Manski. Intuitively,
the exogenous effect of Xj onto Yi is “reflected” back on Yj

via the endogenous effect: the two are indistinguishable.



The linear-in-means model (5/5)
• Some non-linear specifications of social effects do not suffer

from the reflection problem (Brock and Durlauf, 2001, 2007),
though others do (Manski, 2003). Non-linearities might pose
additional problems of specification choice.

• In his paper, Manski also analyzed correlated effects: that
is, correlation structures εi of the error term within groups.

• Group-level “common shocks” are a special case of those
(they can be thought as group-level “fixed effects” αC(i)).

• If correlated effects do exist and εi also correlates with Xj

for j ∈ C (i), they lead to a particular omitted variable bias.

• Intuitively, both social effect types cannot be distinguished
from unobserved characteristics (background, environment)
that are common to or shared by all observation in a group.



Early empirical results on social effects (1/2)
• These identification challenges related to the linear-in-means

model did not prevent the gradual emergence of an empirical
literature about “spillover” and “peer” effects.

• An early notable example is the paper by Sacerdote (2001)
who exploits a natural experiment: the random assignment
of roommates at Dartmouth University.

• Sacerdote finds that a roommate’s “ability” improves one’s
own grade point average (GPA), arguably due to peer effects.

• In this setting, groups are always bidimensional pairs of two
roommates; Yi is the GPA, and Xi is an ability index.

• Sacerdote’s model is essentially a linear-in-means one where
the endogenous effect is restricted (β = 0) and the parameter
of interest is that for the contextual effect: δ.



Early empirical results on social effects (2/2)
• Other early empirical studies adopted approaches similar to

Sacerdote’s; most focused on peer effects in the classroom.

• Hoxby (2000) estimates a model without endogenous effects
where the key Xi variables are gender and race, arguing that
between-cohort demographic composition is exogenous.

• Hanushek, Kain, Markman and Rivkin (2003) exploit lagged
values of Yi to attempt capturing the endogenous effect.

• Carrel, Fullerton and West (2009) utilize random assignment
to “squadrons” in the U.S. Air Force academy to estimate a
model similar to Sacerdote’s, but with larger peer groups.

• Even Ammermueller and Pischke (2009) estimated a model
without endogenous effect; they used within-school variation
in primary school class composition.



Towards the identification of social effects
• Eventually, econometricians and empiricists found avenues

for the identification of both social effect types.

• Following different approaches, Moffitt (2001), Lee (2007) as
well as Graham (2008) noted that higher-order moments
enable identification of key social effects.

• More famously, Bramoullé, Djebbari and Fortin (2009; BDF)
proved that identification holds if social interactions occur
in a non-transitive structure, e.g. in social networks.

• The identification result by BDF, which is reviewed later, is
actually more general: it nests the heterogeneous-group-size
argument by Lee, and it also allows for common shocks.

• The paper by Blume, Brock, Durlauf and Jayaraman (2015)
concludes that reflection is more an exception than a rule.



Higher-order identifying moments (1/5)
• The identification of the endogenous effect via higher-order

moments can be illustrated as follows.

• Write the model in compact matrix notation:

y = αι + βCy + γx + δCx + ε

where C is an N × N matrix with cii = 0 for i = 1, . . . , N
and cij = (|C (i)|)−1 · 1 [j ∈ C (i)] for all (i, j) pairs.

• Assume homoscedasticity: Var [ε|x] = σ2I. This implies the
following covariance restriction:

Var [y|x] = σ2 (I − βC)−2

which is enough to identify β if σ2 is known/estimated.

• Note that |β| < 1 for the conditional variance to be bounded.



Higher-order identifying moments (2/5)
• Intuition can be gained through the typical development of

the Leontiev inverse expansion:

(I − βC)−1 =
∞∑

r=0
βrCr

which shows that the covariance between two outcomes Yi

and Yj of two observations i and j from the same group is
enhanced (as one would expect) by the endogenous effect.

• This result obtains under strong restrictions upon Var [ε|x],
yet Lee (2007) developed a GMM estimation procedure that
applies under more general conditions.

• Crucially, Lee’s approach works if there is variation in group
size. This is best reviewed later as a particular case of BDF.

• This result was later generalized further by Rose (2017).



Higher-order identifying moments (3/5)
In a celebrated paper, Graham (2008) adopts a related approach.
He considers a model without exogenous variables Xi:

Yci = αc + (γ0 − 1) ε̄c + εci

where c = 1, . . . , C indexes classes (e.g. in a school), and:

• αc is a class-specific random effect (due e.g. to teachers);

• εci is a generally unobserved random variable subsuming all
individual heterogeneity (ability, family background, etc.);

• ε̄c ≡ M−1
c

(∑
j∈C(i) εcj + εci

)
is the average value of εci in

class c, while Mc = |C (i)| + 1 is the size of class c.

The parameter of interest is the so-called social multiplier γ0:
with peer effects γ0 > 1. It relates to Manski’s endogenous effect.



Higher-order identifying moments (4/5)
• To identify γ0, Graham exploits variation in class type Wc.

His result, while more general, is best illustrated by a binary
distinction: Wc = 1 if c is large and Wc = 0 if c is small.

• The probability distributions of both αc and εci depend on
Wc. Hence, Var (αc, εc1, . . . , εcMc | Mc, Wc) and consequently
Var (Yc1, . . . , YcMc | Mc, Wc) conditionally depend on Wc. Let
these be the “primitive” moments of this model.

• By developing these moments, Graham notes that it is more
convenient to work with the within and between components
of the conditional variance of Yci, which he defines as follows.

Gw
c = 1

Mc

1
Mc − 1

Mc∑
i=1

(
Yci − Ȳc

)2

Gb
c =

(
Ȳc − E [Yci| Wc]

)2



Higher-order identifying moments (5/5)
• By studying the expectations of Gw

c and Gb
c conditional on

Wc, Graham develops a Wald estimator based on:

E
[
Gb

c

∣∣∣Wc = 1
]

− E
[
Gb

c

∣∣∣Wc = 0
]

E [Gw
c | Wc = 1] − E [Gw

c | Wc = 0] =

= γ2
0 + τ2

0 (1) − τ2
0 (0)

E [Gw
c | Wc = 1] − E [Gw

c | Wc = 0]
where τ0 (Wc) is a function of the primitive moments.

• This Wald estimator identifies γ0 if τ2
0 (1) = τ2

0 (0). Graham
develops assumptions to sustain this result: the central one
is that both students and teachers are randomly assigned
to classes (as in the dataset he uses in his application).

• Intuitively, the between variance of Yci is amplified in large
classes through peer effects, and possibly also by unobserved
heterogeneity across classes – as summarized by τ0 (Wc).



Brief introduction to networks (1/5)
• To best illustrate the network approach to the identification

of social effects, it is useful to first introduce networks briefly.

• A network is defined by a pair (I, G).

• Here, I is a set of nodes, which has dimension |I| = N .

• Instead, G =
{
gij : (i, j) ∈ I2} is a set of edges, representing

pairwise connections between nodes indexed by i and j.

• Unless self-links are allowed, gii = 0 for i = 1, . . . , N .

• Edges can be arrayed in an N × N adjacency matrix G.

G =


0 g12 . . . g1N

g21 0 . . . g2N
...

... . . . ...
gN1 gN2 . . . 0





Brief introduction to networks (2/5)
• Edges are typically normalized: gij ∈ [0, 1] for all gij ∈ G.

• A network is undirected if gij = gji for all (i, j) ∈ I2; it is
otherwise directed.

• A network is unweighted if gij ∈ {0, 1} for all gij ∈ G; it is
otherwise weighted.

• A network is bipartite if I can be partitioned in two parts:
I1 and I2, such that I1 ∪ I2 = I and gij = 0 if (i, j) ∈ I2

1 or
if (i, j) ∈ I2

2 (edges only occur across the two “parts”).

• A path is a sequence of nonzero edges (gij , gjk, . . . , gℓm, gmn)
that connects two nodes (i, n) ∈ I2.

• The dimension of a path is its length. The shortest path
length between two nodes (i, n) ∈ I2 is self-explanatory.



Brief introduction to networks (3/5)
• In directed networks, the in-degree di

i =
∑N

h=1 1 [ghi > 0] is
the total number of edges directed towards node i ∈ I, while
the out-degree do

i =
∑N

j=1 1 [gij > 0] is the total number of
edges departing from it.

• In undirected networks, a node i’s in-degree and out-degree
coincide, and they are more simply called degree di.

• In weighted networks, the two quantities si
i =

∑N
h=1 ghi and

so
i =

∑N
j=1 gij are called in-strength and out-strength (or

simply strength si if the network is undirected).

• These quantities match sums over columns or rows of G.

• In an unweighted network, the in-strength, out-strength and
strength of a node equal the in-degree, out-degree and degree
(respectively).



Brief introduction to networks (4/5)
• The adjacency matrix G is row-normalized if Gι = ι (that

is, all its rows sum up to one; so
i = 1 for all i ∈ I).

• In unweighted networks, the entries of the r-th power Gr

of the adjacency matrix – for r ∈ N – count the number of
paths of length r that connect each pair of nodes.

• In an undirected network, a triad (i, j, k) ∈ I3 is closed if
gijgjkgki > 0 (all nodes are connected), open otherwise.

• Multiple measures of centrality – more “recursive” versions
of degree and strength – exist. For example, the sequence of
Katz-Bonacich centralities k = (k1, . . . , kN ) is as follows:

k = (I − aG)−1 ι =
∞∑

r=0
arGrι

given some “attenuation factor” a ∈ [0, 1].



Brief introduction to networks (5/5)
Here is a graphical illustration of a simple, stylized network. In
it, nodes are represented by circles and edges by lines.

i

j

k

ℓ

• This network is undirected and weights are not reported.

• Yet the network displays substantial degree heterogeneity.

• Nodes i, j, k and ℓ appear to be especially “central.”

• Moreover, two closed triads are found among them.



Social effects in networks (1/8)
• The central result by BDF was to show that if spillover, peer

and more generally social effects occur in a non-trivial social
network, all of Manski’s effects are identified.

• Their starting point is the model

Yi = α + β
N∑

j=1
gijYj + γXi + δ

N∑
j=1

gijXj + εi

where gij is a network edge between observations i and j.
It is assumed that E [εi| X1, . . . , XN ; G] = 0.

• In compact matrix notation, the model writes as follows.

y = αι + βGy + γx + δGx + ε

• BDF assume G to be row-normalized, but their results hold
more generally. This model nests the linear-in-means one.



Social effects in networks (2/8)
• Their main result (Proposition 1) has shown that (α,β,γ, δ)

are globally point-identified if matrices I, G, G2 are linearly
independent and γβ + δ ̸= 0.

• This requires an intransitive network: at least some triads
must be open (that is, non-closed)! This rules out the group
structure of the linear-in-means model with equal group size.

• To gather some intuition, let matrix (I − βG) be invertible
(which requires |β| < 1). Thus, the reduced form of y is:

y = (I − βG)−1 (αι + γx + δGx + ε)

= α

1 − β
ι + γx + (γβ + δ)

∞∑
r=0

βrGr+1x +
∞∑

r=0
βrGrε

which implies that all instruments of the form Gr+1x for
r ∈ N0 can be leveraged for identification.



Social effects in networks (3/8)
• To substantiate, consider any three nodes (i, j, k) in an open

triad of an undirected, unweighted network.

• Nodes i and j are linked (“friends”) to one another, and so
are j and k (gij = gjk = 1), but i and k are not (gik = 0).

• Social effects can be expressed through the following graph.
Yk Yj Yi

Xk Xj Xi

γ
δβ

• Parameter γ is identified off variation in one’s own Xi; the
exogenous effect δ is identified off variation in friends’ Xj ;
the endogenous effect is identified off variation in the Xk of
friends of friends (if γβ+δ ̸= 0: the effects do not offset one
another). Triad openness yields exclusion restrictions.



Social effects in networks (4/8)
• The second result by BDF (Proposition 2) shows that even

if G has a group structure – like C previously – social effects
are identified if groups have different sizes and γβ+δ ̸= 0.

• This results nests Lee’s (2007) and is a special case of BDF’s
Proposition 1. With a group structure, the reduced form is:

Yi = α

1 − β
+
[
γ + β (γβ + δ)

(1 − β) (Mi − 1 + β)

]
Xi+

+ γβ + δ

(1 − β)
(

1 +
β

Mi − 1

)X̄i + νi

where Mi is the size of i’s group, X̄i is the average of Xi in
i’s group, and νi is a composite error term.

• Variation in Mi leads, in turn, to variation in reduced form
coefficients across groups, as explained elaborately by BDF.



Social effects in networks (5/8)
• The third result by BDF (Proposition 3) is about directed

networks: for identification it suffices that G2 ̸= 0 or α ̸= 0.

• Their last results (Propositions 4-5) cover common shocks.
Suppose that observations are split across C separate groups
or networks, and the model reads:

Yci = αc + β
N∑

j=1
gijYcj + γXci + δ

N∑
j=1

gijXcj + εci

where c = 1, . . . , C, c (i) identifies the group or network of
observation i, gij = 0 if c (i) ̸= c (j), while αc is a random
shock shared in group/network c.

• Identification requires that the four matrices I, G, G2, G3

are all linearly independent. This is best understood via
a representation of the model in “local differences.”



Social effects in networks (6/8)
• Taking “local differences” here amounts to pre-multiplying

the model (in compact matrix notation) by I − G:

(I − G) y = β (I − G) Gy+(γI + δG) (I − G) x+(I − G) ε

and since G is row-normalized, common shocks vanish.

• An examination of the reduced form clarifies why in this case
linear independence from G3 is required (Proposition 4).

• BDF develop an analogous result also for “global” differences
(pre-multiplication by I − ιιT/N ; Proposition 5).

• It may appear at a first sight that these conditions are quite
demanding, but they apply to a vast set of networks.

• Yet this analysis does not address correlated effects that are
not “common” across well-identified subgroups.



Social effects in networks (7/8)
• The analysis of identification easily extends to a model with

multiple independent variables:

y = α + βGy + Xγ + GXδ + ε

where X, γ and δ are multidimensional and α is a vector of
common shocks. Consider a locally differenced version of it.

• Estimation is based on Kelejian and Prucha (2008) and Lee
(2003). Let here θ = (β,γ,δ).

• First, a 2SLS estimator θ̂2SLS is calculated, with (I − G) X,
(I − G) GX and (I − G) G2X as instruments.

• Then, a more efficient 2SLS estimator θ̂LEE obtains using

G
(
I − β̂2SLSG

)−1 [
(I − G)

(
Xγ̂2SLS + GXδ̂2SLS

)]
as well as (I − G) X and (I − G) GX as instruments.



Social effects in networks (8/8)
• BDF showcase their approach in Monte Carlo experiments as

well as in an empirical application based on the Add Health
data (a sample of U.S. schools collected between 1994 and
1995, with information about students’ friendships). In their
analysis, Yi is the consumption of “recreational activities.”

• The paper by BDF has been influential beyond expectations,
and motivated novel empirical applications. While it allowed
to overcome Manski’s reflection problem, the BDF approach
is however problematic in three main respects.

• First, it requires accurate data on the network(s) G, which
are typically very costly to acquire. Second, it assumes that
the network (specifically, its edge set G) is exogenous. Third,
it restricts correlated effects to common shocks only.

• Research is currently active along all these three dimensions.



A connection with spatial econometrics
The extended framework developed by BDF is tightly connected
to the “General Nesting Model” in spatial econometrics:

y = αι + βWy + Xγ + WXδ + ε

ε = ρWε + υ

where W is a zero-diagonal matrix of “spatial weights” (often
inverse functions of geographical distance, e.g. “distance decay”)
and the error terms ε follow a spatially autoregressive structure,
with υ typically being a vector of i.i.d. shocks.

• Restrictions on this model take various names. For example,
δ = 0 and ρ = 0 yield a “Spatially Autoregressive” model.

• The spatial econometrics literature has generally focused on
MLE and GMM approaches to estimate versions of the GNS
model, typically assuming that W and X are exogenous.



Later empirical results on social effects (1/2)
• It is worth to briefly review some empirical analyses about

social effects in networks that followed BDF.

• The first actual application of a “friends of friends” approach
was developed by De Giorgi, Pellizzari and Redaelli (2010;
DGPR) independently of BDF.

• They studied peer effects on the choice of major (economics
versus management: a binary Yi) at Bocconi University.

• At Bocconi, future students of both majors used to take some
“common courses” in their first year and a half of education.
Students are allocated randomly into common courses.

• DGPR consider two students i and j as “friends” (gij > 0) if
they attended at least four common courses together. This
delivers an exogenous and intransitive network.



Later empirical results on social effects (2/2)
• Patnam (2013) studies the effect of firm networks shaped by

board interlocks on firm policy decisions in India.

• More recently, De Giorgi, Frederiksen and Pistaferri (2020)
studied peer effects in household consumption using Danish
administrative data. They allow for different exogenous and
endogenous effects that depend on either the husband’s or
the wife’s coworker network; this helps break transitivity.

• Arduini, Patacchini and Rainone (2020) study a model à la
BDF where xi features an external treatment, and where the
exogenous and endogenous effects are heterogeneous. Using
this model they evaluate a Mexican program against poverty,
finding that 50% of its effect is due to externalities.

• Others adopt different approaches; Bramoullé, Djebbari and
Fortin (2020) provide a recent extended survey.



Towards more general models of network effects
The research aimed at solving the three main issues of the BDF
framework can be summarized as follows.

1. While network data are costly to collect, G may be inferred
from panel data. The intuition is that network effects reveal
themselves as cross-correlation in y over time. Extant efforts
(including Manresa, 2016; de Paula, Rasul and Souza, 2020;
Rose, 2020) are based on linear penalized estimators.

2. Attempts to address endogeneity of the edge set G include
control function methods (Arduini, Patacchini and Rainone,
2015; Johnsson and Moon, 2019) as well as GMM for panel
data (Kuersteiner and Prucha, 2020).

3. Methods suited to more general correlated effects structures
(in different settings) have been proposed by Zacchia (2020)
and Pereda-Fernández and Zacchia (2022).



Linear penalized estimators: a summary (1/3)
A brief summary of linear penalized estimators (developed next)
later helps overview methods for inferring unknown networks G.

Consider a linear model yi = xT
i β+εi. An elastic net estimator

of β is defined as follows:

β̂EN = arg min
β∈RK

∥y − Xβ∥2
2 + λ (κ∥β∥1 + (1 − κ) ∥β∥2)

where the OLS objective function ∥y − Xβ∥2
2 is “penalized” by a

term increasing in β governed by the penalization parameter
λ ≥ 0. Here, κ ∈ [0, 1] controls the “type” of elastic net estimator.

At the extremes:
• if κ = 0, β̂EN is a ridge regression estimator;

• if κ = 1, β̂EN is instead a Least Absolute Shrinkage and
Selection Operator (LASSO) estimator.



Linear penalized estimators: a summary (2/3)
• Both the values of λ and κ are chosen by the researcher.

• The penalty is a constraint to the least squares minimization
problem. This is visualized in the figure below, for a stylized
case where |β| = 2. The continuous lines are the constraints
for ridge regression (left panel) and LASSO (right panel).

β̂EN

β̂OLS

β1

β2

β̂EN

β̂OLS

β1

β2

• By construction, these estimators “shrink” OLS estimates of
β towards zero, and increasingly so the higher is λ.



Linear penalized estimators: a summary (3/3)
• In ridge regression, the penalty is based on the L2 norm for

β: this shrinks all coefficients uniformly.

• With the LASSO, the penalty is based on the L1 norm for β:
most coefficients are shrunk at zero; only few are “selected.”

• Internals values of κ ∈ (0, 1) lead to intermediate behavior.

• By construction, all elastic net estimators are inconsistent.
However, the coefficients selected by the LASSO can be used
in “post-LASSO” consistent OLS estimation.

• These estimators are especially popular in machine learning
settings where K >> N and good prediction matters. The
LASSO is especially suited to a so-called sparsity condition.

K∑
k=1

1 [βk ̸= 0] << N



Identification of spillover networks (1/8)
• Manresa (2016) applied a penalized estimation approach to

the following model about Research and Development (Xjt)
“spillovers” on firm productivity (Yit).

Yit = αi + γiiXit +
∑
j ̸=i

γjiXjt + εit

⇒ yt = α + Γxt + εt

• She assumed a sparsity condition
∑

j ̸=i 1 {γji ̸= 0} << T
for all firms i in the panel.

• She estimated the model via the LASSO (and post-LASSO
subsequent OLS) using data on U.S. public companies.(

α̂, Γ̂
)

= arg min
(α,Γ)

T∑
t=1

∥yt − α − Γxt∥2
2 − λ∥vec (Γ)∥1

• She extended the model to more covariates, time effects and
examined the asymptotics of the ultimate OLS estimates.



Identification of spillover networks (2/8)
• Rose (2020) extends the framework to spatial lags of yt:

Φyt = αι + Γxt + εt

and treats both Φ and Γ as unknown estimands.

• He suggests – and this is indeed helpful – to think of a linear
simultaneous equations (SEM) representation of this model.

ϕ11y1t + . . . + ϕ1N yNt = α + γ11x1t + . . . + γ1N xNt + ε1t

ϕ21y1t + . . . + ϕ2N yNt = α + γ21x1t + . . . + γ2N xNt + ε2t

. . . = . . .

ϕN1y1t + . . . + ϕNN yNt = α + γN1x1t + . . . + γNN xNt + εNt

• Rose postulates sparsity conditions on both Φ and Γ akin
to the classical SEM rank/order conditions (Lecture 9).

• For estimation’s sake, he penalizes both vec (Φ) and vec (Γ).



Identification of spillover networks (3/8)
• De Paula, Rasul and Souza (2020; DPRS) instead apply the

basic idea to the full-fledged BDF framework.

yt = αι + βGyt + γxt + δGxt + εt

• The objective is to estimate the parameters θ ≡ (G,β,γ, δ).
Observe that here only one matrix is unknown: G.

• As in BDF, it is useful to exploit the model’s reduced form:

yt = (I − βG)−1 (αι + γxt + δGxt + εt)
= µι + Πxt + νt

where µ is a composite parameter, Π is a matrix of reduced
form parameters, and νt is a vector of composite error terms.

• The key question that DPRS address is whether there is a
unique mapping Π 7→ (G,β,γ, δ).



Identification of spillover networks (4/8)
• The key contribution by DPRS is to show that their model

is identified under loose conditions. Indeed, sparsity is not
necessary, but their model is more restricted than Rose’s.

• The inverse mapping between structural and reduced form
parameters is more easily derived in a demeaned model, and
it is expressed as follows.

Π (θ) = γI + (βγ + δ)
∞∑

k=0
βk−1Gk

• Their Theorem 1 proves local point identification of θ under
the assumptions detailed next. The proof is an application
of the implicit function theorem, as in Rothenberg (1971).

• Their Theorem 2 proves global point identification of θ if
the sign of βγ + δ is known a priori.



Identification of spillover networks (5/8)
The assumptions that support identification in Theorems 1 and 2
by DPRS are as follows. They refer to the true parameter values.

1. gii = 0 for i = 1, . . . , N : this is a standard normalization.

2.
∑N

j=1 |gij | ≤ 1 for all i ∈ I while |β| ≤ 1: social interactions
are “stationary” in the sense that the variance-covariance of
yt is bounded.

3. βγ+δ ̸= 0: the effects do not offset one another, as in BDF.

4.
∑N

j=1 |gij | = 1 for at least an observation i: this is another
normalization.

5. diag
(
G2) is not a multiple of ι: their crucial assumption

(its interpretation is that nodes have different “popularity”).



Identification of spillover networks (6/8)
The model by DPRS is easily extended to:

• individual fixed effects α = (α1, . . . ,αN )T,

yt = α + βGyt + γxt + δGxt + εt

• time-varying shocks αt for t = 1, . . . , T ,

yt = αtι + βGyt + γxt + δGxt + εt

• higher-dimensional exogenous characteristics Xt,

yt = αι + βGyt + Xtγ + GXtδ + εt

• or any combination of the above.

As usual, fixed effects are purged by appropriate transformations
(“within” or “between”) of the data.



Identification of spillover networks (7/8)
While unnecessary for identification, sparsity comes back from
the backdoor for the sake of estimation.

• Given any element gij of G, DPRS assume the following.∑
j ̸=i

1 {gij ̸= 0} << T

• Their estimation approach adapts the Elastic Net GMM
by Caner and Zhang (2014). Denoting by y and x the vectors
that stack all the observations of yt and xt:

θ̂ENGMM = arg min
θ∈Θ

gT
NT (θ; y, x) ANT gNT (θ; y, x) −

− λ [κ∥θ∥1 + (1 − κ) ∥θ∥2]

where, as usual with GMM, gNT (θ; y, x) is a set of sample
analogues of the population moment conditions, while ANT

is a weighting matrix.



Identification of spillover networks (8/8)
• The population moment conditions set by DPRS are:

gNT (θ;y1, . . . ,yT ,x1, . . . ,xT ) = E

 x̃1 (ỹ1 − Π (θ) x̃1)
...

x̃T (ỹT − Π (θ) x̃T )


where x̃t, ỹt denotes appropriate transformation of the data
aimed at purging constants or fixed effects (for t = 1, . . . , T )
and Π (θ) is the structural-to-reduced parameters mapping.

• This can be a computationally demanding problem: to find a
global minimum, DPRS adapt the so-called particles swarm
algorithm (Kennedy and Eberhart, 1995).

• Good asymptotics here depend on N and T to “grow about
at the same rate.” This is quite a strong data requirement!
The empirical application illustrated by DPRS – about tax
competition between U.S. states – is informed accordingly.



Introduction to network formation
• In parallel with the use of networks to estimate social effects,

interest for models of network formation also grew.

• Specifically, these are models aimed at explaining the entries
of an adjacency matrix G. Their key features are a dyadic
level of variation – the unit of observation is a pair (i, j) ∈ I2

– and discrete outcomes.

• Ideally, these econometric models are predicated on explicit
theoretical (behavioral) models of network formation. This,
however, leads to econometric complications: most notably,
unobserved heterogeneity and multiple equilibria.

• There is not a tight connection between these models and the
study of social effects. However, control function approaches
to correct for endogeneity of G in the BDF model demand
a suitable model of network formation.



Dyadic regression in brief
• A dyadic regression is a statistical or econometric model

for the expectation of a dependent variable Yij conditional
on some independent variables xij ; these are all observed at
the level of a pair (i, j), with i, j = 1, . . . , N and i ̸= j.

E [Yij |xij ] = h (xij ;θ)

• Such a model has a complex structure of cross-observation
dependence. Let the error term be defined as follows:

εij = Yij − h (xij ;θ)

one can reasonably expect that Cov (εij , εkℓ|xij ,xkℓ) ̸= 0 if
the two pairs (i, j) and (k, ℓ) have any elements in common.

• Inference on estimators of θ requires suitable estimators of
their variance-covariance. Cameron and Miller (2014) as well
as Tabord-Meehan (2021) develop them for linear h (xij ;θ)
functions; Graham (2020) studies the general case.



Theories of network formation: a summary (1/2)
• The baseline network formation model in graph theory and

statistical physics is the “random graph” model by Erdős
and Rényi (1959) for undirected, unweighted networks. This
model treats gij as the realization of a random variable Gij

that follows a simple Bernoulli distribution.

P (Gij = gij ; p) = pgij (1 − p)1−gij · 1 [gij ∈ {0, 1}]

• While simple, the random graph model can reproduce many
topological properties of real-world networks, though not all.

• To an economist’s eye, this model is devoid of any behavioral
component: this led to the development of strategic models
of network formation that are modeled as a game.

• Strategic games of network formation are not simple: edges
result from the decisions taken by two players (e.g. i and j),
whose preferences may depend on the whole topology G.



Theories of network formation: a summary (2/2)
• One famous solution concept is pairwise stability (Jackson

and Wolinsky, 1996) which applies to undirected, unweighted
networks: edges occur if both i and j “agree” in equilibrium.

• Let G be the equilibrium edge sequence, G−ij be the one that
obtains by deleting the link between i and j (if gij = 1) and
G+ij the one resulting by adding that link (if gij = 0). Thus:

gij = 1 ⇐⇒ Ui (G) ≥ Ui (G−ij) and Uj (G) ≥ Uj (G−ij)
gij = 0 ⇐⇒ Ui (G) > Ui (G+ij) or Uj (G) > Uj (G+ij)

where Ui (·), Uj (·) denote individual utilities that depend on
the entire edge sequence G (also about other nodes).

• However, this solution concept rules out transfers between
nodes. An alternative model provides the following.

gij = 1 ⇐⇒ Ui (G) + Uj (G) ≥ Ui (G−ij) + Uj (G−ij)



Conditional network formation (1/7)
• Graham (2017) developed the baseline econometric model to

study the formation of undirected, unweighted networks.

• Let Gij be a dyadic random variable with support on {0, 1}
and whose realization is gij . Graham’s model reads:

Gij = 1
[
αi + αj + xT

ijβ + εij ≥ 0
]

where αi and αj are two individual “attributes” that encode
individual heterogeneity, xij are dyadic characteristics
(arrayed as X), and εij is a dyadic idiosyncratic shock.

• The model is symmetric across dyads: with N nodes it has
N (N − 1) effective cross-sectional observations.

• This network formation rule implicitly allows for “transfers”
of utility, but there are no strategic considerations at play
(the latent variable does not depend on other edges).



Conditional network formation (2/7)
• The original motivation for this model is a classical problem

in the statistical analysis of networks: the need to distinguish
“homophily” from “unobserved heterogeneity.”

• Why are central nodes typically connected to one another?
One explanation is homophily: node similarity (potentially
encoded in xij) is conducive to higher edge probabilities.

• An alternative explanation is that nodes are heterogeneous
in their tendency to generate edges (and therefore acquire a
higher degree), as encoded in αi and αj .

• This is a standard problem for an econometrician: Graham’s
contribution is a solution for this particular dyadic setting.

• For simplicity’s sake, Graham removes complications related
to cross-dependence: εij is assumed i.i.d. across dyads.



Conditional network formation (3/7)
• More specifically, Graham assumes εij ∼ Logistic (0, 1). This

leads to the following edge formation conditional probability.

P (Gij = 1|xij) =
exp

(
αi + αj + xT

ijβ
)

1 + exp
(
αi + αj + xT

ijβ
)

• Conceptually, MLE estimation of this augmented logit model
is straightforward. Shall one here worry about the incidental
parameter problem due to the “fixed effects” αi and αj?

• Graham argues that one should not: consistent estimation
of β and α = (α1, . . . ,αN ) is possible. Intuitively, there are
N − 1 observations that identify each fixed effect αi.

• Graham does propose a “Joint Maximum Likelihood” (JML)
estimator for this model, but this is not his key contribution.
This JML estimator may be computationally demanding.



Conditional network formation (4/7)
• Graham’s key contribution is the so-called “Tetrad Logit”

(TL) conditional MLE estimator for this model.

• To build motivation, write the observed degree sequence
as d = (d1, . . . , dN ), the corresponding random vector as d,
and the set of adjacency matrices with degree sequence d as:

Gd = {H : H ∈ G, Hι = d}

where G is defined as the support of G: the random matrix
that generates G. Matrices H ∈ Gd have entries hij .

• The degree sequence d is a sufficient statistic for α. Indeed,
the probability to observe the network or adjacency matrix
G conditional on d does not depend on α.

P (G = G|X,d = d) =
exp

(∑N
i=1

∑
j<i gijx

T
ijβ
)

∑
H∈Gd

exp
(∑N

i=1
∑

j<i hijxT
ijβ
)



Conditional network formation (5/7)
• This approach is reminiscent of “conditional” estimation of

logit models with fixed effects in panel data. However, it is
complicated to apply in practice: Gd is difficult to construct.

• Thus, Graham proposes a variation of it which exploits the
identifying power of tetrads: combinations of four distinct
nodes (i, j, k, ℓ). He defines the following random variable.

Sij,kℓ = GijGkℓ (1 − Gik) (1 − Gjℓ) −
− (1 − Gij) (1 − Gkℓ) GikGjℓ

• It is Sij,kℓ = 1 if Gij = Gkℓ = 1, Gik = Gjℓ = 0; Sij,kℓ = −1 if
the opposite occurs; Sij,kℓ = 0 otherwise. The two edges Giℓ

and Gjk (“dotted” in the figure below) do not affect Sij,kℓ.

Sij,kℓ = 1 ⇐⇒
i

j

k

ℓ

Sij,kℓ = −1 ⇐⇒
i

j

k

ℓ



Conditional network formation (6/7)
• By defining x̃ij,kℓ ≡ xij + xkl − xik − xjℓ, it is:

P (Sij,kℓ = 1| x̃ij,kℓ, Sij,kℓ ∈ {−1, 1}) =
exp

(
x̃T

ij,kℓβ
)

1 + exp
(
x̃T

ij,kℓβ
)

which identifies β: neither this expression depends on α.

• Graham thus defines the following log-likelihood index.

lij,kℓ (β| sij,kℓ, x̃ij,kℓ) =

= |sij,kℓ|
{

sij,kℓx̃T
ij,kℓβ − log

[
1 + exp

(
sij,kℓx̃T

ij,kℓβ
)]}

• However, this index is not permutation-invariant. Graham
defines a symmetric one that averages over all the 4! = 24
permutations of the tetrad, which are collected in the set I4.

γij,kℓ (β) = 1
24

∑
(i′,j′,k′,ℓ′)∈I4

li′j′,k′ℓ′ (β| sij,kℓ, x̃ij,kℓ)



Conditional network formation (7/7)
• The TL estimator is thus defined as follows.

β̂T L = arg max
β∈RK

(
N

4

)−1 N∑
i=1

∑
j<i

∑
k<j

∑
ℓ<k

γij,kℓ (β)

• The intuition that supports this estimator is that the tetrad
index lij,kℓ (β) conditions on the local degree sequence in the
tetrad, not unlike an unfeasible estimator that conditions on
the entire degree sequence d would do.

• However, identification of β requires that conditional on the
local degree sequence, a tetrad (i, j, k, ℓ) can assume multiple
configurations. Hence, many tetrads in the data would not
contribute to the MLE problem. Graham discusses a useful
“taxonomy of tetrads” that helps appreciate this feature.

• Graham shows that the Tetrad Logit estimator is consistent
and asymptotically normal: certainly not an easy task.



Strategic network formation: an open issue
• In Graham’s model, the formation of an edge is conditionally

independent of the rest of the edge sequence G. Thus, it can
be seen as a restriction of a more general model, such as the
following (for δ = 0) where “friends in common” matter.

Gij = 1

[
αi + αj + xT

ijβ + δ
N∑

k=1
GikGkj + εij ≥ 0

]
• As a game, this model features multiple equilibria. While

strategic considerations in network formation are important,
their econometric evaluation is still a conceptual challenge.

• The literature on the econometrics of games treats multiple
equilibria under the framework of set identification. This is
hard to apply here: the dimension of G is in the order of 2N .

• See de Paula, Richards-Shubik and Tamer (2018) and Sheng
(2020) for recent advances that rely on specific restrictions.


